Georg Muntingh has authored 3 sequences.
A172004
Let y = y(u,v) be implicitly defined by g(u,v,y(u,v)) = 0. Read as a triangle by rows k = 1,2,..., the sequence represents the number of terms a(i,k-i) in the expansion of the partial derivatives d^k y/du^i dv^{k-i} in terms of partial derivatives of g.
Original entry on oeis.org
1, 1, 3, 4, 3, 9, 15, 15, 9, 24, 47, 59, 47, 24, 61, 136, 195, 195, 136, 61, 145, 360, 580, 663, 580, 360, 145, 333, 904, 1586, 2032, 2032, 1586, 904, 333, 732, 2152, 4077, 5684, 6350, 5684, 4077, 2152, 732, 1565, 4927, 9948, 14938, 18123, 18123, 14938, 9948
Offset: 1
The formulas dy/du = -g_u/g_y,
d^2y/du^2 = -g_yy g_u^2/g_y^3 + 2g_uy g_u/g_y^2 - g_uu/g_y,
d^2y/dudv = -2g_yy g_u g_v / g_y^3 + g_uy g_v/g_y^2 + g_vy g_u/g_y^3 - g_uv/g_y
imply that a(1,0) = 1, a(2,0) = 3, and a(1,1) = 4.
Cf.
A003262, which is the univariate variant of this sequence.
Cf.
A172003, which is the analogous sequence for implicit divided differences, and
A162326 for its univariate variant.
-
# Upon executing the following code in Sage 4.2 (using Singular as a backend), it
# computes the number of terms a(n1,n2) and stores it in the entry A[n1][n2] of the
# double list A.
N = 9
E1 = N
E2 = N
p = [[[0 for i1 in range(E1+1)] for i2 in range(E2+1)] for j in range(E1 + E2)]
q = [[[0 for i1 in range(E1+1)] for i2 in range(E2+1)] for j in range(E1 + E2)]
for m in range(1, E1 + E2):
for d in range(1, m+1):
quotient, remainder = divmod(m, d)
if remainder == 0:
for i1 in range(quotient + 1 + 1):
for i2 in range(quotient + 1 - i1 + 1):
if d*i1 <= E1 and d*i2 <= E2:
q[m][i1*d][i2*d] += 1/d
for i1 in range(E1 + 1):
for i2 in range(E2 + 1):
p[0][i1][i2] = 1
for n in range(1, E1 + E2):
for s in range(n+1):
for k1 in range(E1+1):
for k2 in range(E2+1):
for i1 in range(k1 + 1):
for i2 in range(k2 + 1):
p[n][k1][k2] += 1/n * s * q[s][k1-i1][k2-i2] * p[n-s][i1][i2]
A = [[ p[n1+n2-1][n1][n2] for n1 in range(E1+1)] for n2 in range(E2+1)]
A172003
Let y = y(u,v) be implicitly defined by g(u,v,y(u,v)) = 0. Read as a triangle by rows, the sequence represents the number of terms a(i,k-i) in the expansion of the bivariate divided difference [u_0,...,u_i; v_0,...,v_{k-i}]y in terms of trivariate divided differences of g.
Original entry on oeis.org
1, 1, 3, 5, 3, 13, 33, 33, 13, 71, 245, 351, 245, 71, 441, 1921, 3597, 3597, 1921, 441, 2955, 15525, 35931, 46709, 35931, 15525, 2955, 20805, 127905, 352665, 563821, 563821, 352665, 127905, 20805, 151695, 1067925, 3417975, 6483285, 7963151
Offset: 1
The subsequences a(1,0),a(2,0),a(3,0),... and a(0,1),a(0,2),a(0,3),... coincide with the sequence A162326.
For (m,n) = (1,1), one expresses [u_0,u_1;v_0,v_1]y as a sum of 5 terms,
[01;01]y =
- [0;0;(0,0),(1,0),(1,1)]g * [01;0;(1,0)]g * [1;01;(1,1)]g /
( [0;0;(0,0),(1,1)]g * [0;0;(0,0),(1,0)]g * [1;0;(1,0),(1,1)]g )
+ [01;0;(1,0),(1,1)]g * [1;01;(1,1)]g /
( [0;0;(0,0),(1,1)]g * [1;0;(1,0),(1,1)]g )
- [01;01;(1,1)]g / [0;0;(0,0),(1,1)]g
- [0;0;(0,0),(0,1),(1,1)]g * [0;01;(0,1)]g * [01;1;(1,1)]g /
( [0;0;(0,0),(1,1)]g * [0;0;(0,0),(0,1)]g * [0;1;(0,1),(1,1)]g )
+ [0;01;(0,1),(1,1)]g * [01;1;(1,1)]g /
( [0;0;(0,0),(1,1)]g * [0;1;(0,1),(1,1)]g ),
where the numbers refer to the indices of the corresponding variable, e.g.
[1;01;(1,1)]g = [u_1;v_0,v_1;y(u_1,v_1)]g.
Cf.
A162326, which is the univariate variant of this sequence.
Cf.
A172004, which is the analogous sequence for implicit derivatives, and
A003262 for its univariate variant.
-
R. = PolynomialRing(ZZ,3)
def P(n1,n2,q):
E = cartesian_product([list(range(n1+1)), list(range(n2+1)), list(range(n1+n2+1))])
E = [(i1,i2,j) for (i1,i2,j) in E if (i1,i2,j) != (0,0,0) and
(i1,i2,j) != (0,0,1) and i1 + i2 + j <= n1 + n2 and
2*(i1 + i2) + j - 1 <= 2*(n1+n2) - q]
return R.sum(X1^s1 * X2^s2 * Y^(s1+s2+t-1) for s1,s2,t in E)
n1, n2 = 4, 4
L = [[0 for _ in range(n1 + 1)]] * (n2 + 1)
h = 1 + sum(((P(n1,n2,q))^q)/q for q in range(1,2*(n1+n2)))
for k1 in range(n1+1):
for k2 in range(k1+1):
if (k1, k2) != (0, 0):
print(k1, k2, h.coefficient({X1:k1, X2:k2, Y:k1+k2-1}))
A162326
Let a(0) = a(1) = 1, and n*a(n) = 2*(-7+5*n)*a(n-1) + 9*(2-n)*a(n-2) for n >= 2.
Original entry on oeis.org
1, 1, 3, 13, 71, 441, 2955, 20805, 151695, 1135345, 8671763, 67320573, 529626839, 4213228969, 33833367963, 273892683573, 2232832964895, 18314495896545, 151037687326755, 1251606057754605, 10416531069771111, 87029307323766681
Offset: 0
Write [0...n]y for [x0,...,xn]y and [0...s,0...t]g for [x0,...,xs;y0,...,yt]g.
For n = 1 one finds 1 term, [01]y = -[01;1]g/[0;01]g.
For n = 2 one finds 3 terms, [012]y = -[012;2]g/[0;02]g + ([01;12]g[12;2]g)/([0;02]g[1;12]g) - ([0;012]g[01;1]g[12;2]g)/([0;02]g[0;01]g[1;12]g).
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Georg Muntingh, Implicit Divided Differences, Little Schroeder Numbers, and Catalan Numbers, J. Integ. Seqs., Vol. 15 (2012), Article 12.6.5.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 98.
Cf.
A172003, which is a generalization to bivariate implicit functions.
Cf.
A003262, which is the analogous sequence for implicit derivatives, and
A172004 for its generalization to bivariate implicit functions.
-
m:=20; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (5-Sqrt((1-9*x)/(1-x)))/4 )); // G. C. Greubel, Feb 07 2019
-
a:=[1,3]; for n in [3..21] do Append(~a,(2*(-7+5*n)*a[n-1] + 9*(2-n)*a[n-2]) div n); end for ; [1] cat a; // Marius A. Burtea, Jan 20 2020
-
CoefficientList[Series[(5-Sqrt[(1-9*x)/(1-x)])/4, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
-
a(n):=if n=0 then 1 else sum(binomial(n,k)*2^(n-k-1)*binomial(2*n-2*k-2,n-k-1),k,0,n)/n; /* Vladimir Kruchinin, Mar 13 2016 */
-
a(n) = if(n<2, 1, (2*(-7+5*n)*a(n-1) + 9*(2-n)*a(n-2))/n);
vector(25, n, a(n-1)) \\ Altug Alkan, Oct 06 2015
-
my(x='x+O('x^20)); Vec((5-sqrt((1-9*x)/(1-x)))/4) \\ G. C. Greubel, Feb 07 2019
-
L = [1, 1]
for n in range(2,22):
L.append( ((-14 + 10*n)*L[-1] + (18-9*n)*L[-2])//n )
print(L)
# Georg Muntingh, Jul 19 2012
-
((5-sqrt((1-9*x)/(1-x)))/4).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 07 2019
Comments