cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A007317 Binomial transform of Catalan numbers.

Original entry on oeis.org

1, 2, 5, 15, 51, 188, 731, 2950, 12235, 51822, 223191, 974427, 4302645, 19181100, 86211885, 390248055, 1777495635, 8140539950, 37463689775, 173164232965, 803539474345, 3741930523740, 17481709707825, 81912506777200, 384847173838501, 1812610804416698
Offset: 1

Views

Author

Keywords

Comments

Partial sums of A002212 (the restricted hexagonal polyominoes with n cells). Number of Schroeder paths (i.e., consisting of steps U=(1,1),D=(1,-1),H=(2,0) and never going below the x-axis) from (0,0) to (2n-2,0), with no peaks at even level. Example: a(3)=5 because among the six Schroeder paths from (0,0) to (4,0) only UUDD has a peak at an even level. - Emeric Deutsch, Dec 06 2003
Number of binary trees of weight n where leaves have positive integer weights. Non-commutative Non-associative version of partitions of n. - Michael Somos, May 23 2005
Appears also as the number of Euler trees with total weight n (associated with even switching class of matrices of order 2n). - David Garber, Sep 19 2005
Number of symmetric hex trees with 2n-1 edges; also number of symmetric hex trees with 2n-2 edges. A hex tree is a rooted tree where each vertex has 0, 1, or 2 children and, when only one child is present, it is either a left child, or a median child, or a right child (name due to an obvious bijection with certain tree-like polyhexes; see the Harary-Read reference). A hex tree is symmetric if it is identical with its reflection in a bisector through the root. - Emeric Deutsch, Dec 19 2006
The Hankel transform of [1, 2, 5, 15, 51, 188, ...] is [1, 1, 1, 1, 1, ...], see A000012 ; the Hankel transform of [2, 5, 15, 51, 188, 731, ...] is [2, 5, 13, 34, 89, ...], see A001519. - Philippe Deléham, Dec 19 2006
a(n) = number of 321-avoiding partitions of [n]. A partition is 321-avoiding if the permutation obtained from its canonical form (entries in each block listed in increasing order and blocks listed in increasing order of their first entries) is 321-avoiding. For example, the only partition of [5] that fails to be 321-avoiding is 15/24/3 because the entries 5,4,3 in the permutation 15243 form a 321 pattern. - David Callan, Jul 22 2008
The sequence 1,1,2,5,15,51,188,... has Hankel transform A001519. - Paul Barry, Jan 13 2009
From Gary W. Adamson, May 17 2009: (Start)
Equals INVERT transform of A033321: (1, 1, 2, 6, 21, 79, 311, ...).
Equals INVERTi transform of A002212: (1, 3, 10, 36, 137, ...).
Convolved with A026378, (1, 4, 17, 75, 339, ...) = A026376: (1, 6, 30, 144, ...)
(End)
a(n) is the number of vertices of the composihedron CK(n). The composihedra are a sequence of convex polytopes used to define maps of certain homotopy H-spaces. They are cellular quotients of the multiplihedra and cellular covers of the cubes. - Stefan Forcey (sforcey(AT)gmail.com), Dec 17 2009
a(n) is the number of Motzkin paths of length n-1 in which the (1,0)-steps at level 0 come in 2 colors and those at a higher level come in 3 colors. Example: a(4)=15 because we have 2^3 = 8 paths of shape UHD, 2 paths of shape HUD, 2 paths of shape UDH, and 3 paths of shape UHD; here U=(1,1), H=(1,0), and D=(1,-1). - Emeric Deutsch, May 02 2011
REVERT transform of (1, 2, -3, 5, -8, 13, -21, 34, ... ) where the entries are Fibonacci numbers, A000045. Equivalently, coefficients in the series reversion of x(1-x)/(1+x-x^2). This means that the substitution of the gf (1-x-(1-6x+5x^2)^(1/2))/(2(1-x)) for x in x(1-x)/(1+x-x^2) will simplify to x. - David Callan, Nov 11 2012
The number of plane trees with nodes that have positive integer weights and whose total weight is n. - Brad R. Jones, Jun 12 2014
From Tom Copeland, Nov 02 2014: (Start)
Let P(x) = x/(1+x) with comp. inverse Pinv(x) = x/(1-x) = -P[-x], and C(x)= [1-sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108, with inverse Cinv(x) = x * (1-x).
Fin(x) = P[C(x)] = C(x)/[1 + C(x)] is an o.g.f. for the Fine numbers, A000957 with inverse Fin^(-1)(x) = Cinv[Pinv(x)] = Cinv[-P(-x)].
Mot(x) = C[P(x)] = C[-Pinv(-x)] gives an o.g.f. for shifted A005043, the Motzkin or Riordan numbers with comp. inverse Mot^(-1)(x) = Pinv[Cinv(x)] = (x - x^2) / (1 - x + x^2) (cf. A057078).
BTC(x) = C[Pinv(x)] gives A007317, a binomial transform of the Catalan numbers, with BTC^(-1)(x) = P[Cinv(x)] = (x-x^2) / (1 + x - x^2).
Fib(x) = -Fin[Cinv(Cinv(-x))] = -P[Cinv(-x)] = x + 2 x^2 + 3 x^3 + 5 x^4 + ... = (x+x^2)/[1-x-x^2] is an o.g.f. for the shifted Fibonacci sequence A000045, so the comp. inverse is Fib^(-1)(x) = -C[Pinv(-x)] = -BTC(-x) and Fib(x) = -BTC^(-1)(-x).
Generalizing to P(x,t) = x /(1 + t*x) and Pinv(x,t) = x /(1 - t*x) = -P(-x,t) gives other relations to lattice paths, such as the o.g.f. for A091867, C[P[x,1-t]], and that for A104597, Pinv[Cinv(x),t+1].
(End)
Starting with offset 0, a(n) is also the number of Schröder paths of semilength n avoiding UH (an up step directly followed by a long horizontal step). Example: a(2)=5 because among the six possible Schröder paths of semilength 2 only UHD contains UH. - Valerie Roitner, Jul 23 2020

Examples

			a(3)=5 since {3, (1+2), (1+(1+1)), (2+1), ((1+1)+1)} are the five weighted binary trees of weight 3.
G.f. = x + 2*x^2 + 5*x^3 + 15*x^4 + 51*x^5 + 188*x^6 + 731*x^7 + 2950*x^8 + 12235*x^9 + ... _Michael Somos_, Jan 17 2018
		

References

  • J. Brunvoll et al., Studies of some chemically relevant polygonal systems: mono-q-polyhexes, ACH Models in Chem., 133 (3) (1996), 277-298, Eq. 15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A181768 for another version. - N. J. A. Sloane, Nov 12 2010
First column of triangle A104259. Row sums of absolute values of A091699.
Number of vertices of multiplihedron A121988.
m-th binomial transform of the Catalan numbers: A126930 (m = -2), A005043 (m = -1), A000108 (m = 0), A064613 (m = 2), A104455 (m = 3), A104498 (m = 4) and A154623 (m = 5).

Programs

  • Maple
    G := (1-sqrt(1-4*z/(1-z)))*1/2: Gser := series(G, z = 0, 30): seq(coeff(Gser, z, n), n = 1 .. 26); # Emeric Deutsch, Aug 12 2007
    seq(round(evalf(JacobiP(n-1,1,-n-1/2,9)/n,99)),n=1..25); # Peter Luschny, Sep 23 2014
  • Mathematica
    Rest@ CoefficientList[ InverseSeries[ Series[(y - y^2)/(1 + y - y^2), {y, 0, 26}], x], x] (* then A(x)=y(x); note that InverseSeries[Series[y-y^2, {y, 0, 24}], x] produces A000108(x) *) (* Len Smiley, Apr 10 2000 *)
    Range[0, 25]! CoefficientList[ Series[ Exp[ 3x] (BesselI[0, 2x] - BesselI[1, 2x]), {x, 0, 25}], x] (* Robert G. Wilson v, Apr 15 2011 *)
    a[n_] := Sum[ Binomial[n, k]*CatalanNumber[k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 07 2012 *)
    Rest[CoefficientList[Series[3/2 - (1/2) Sqrt[(1 - 5 x)/(1 - x)], {x, 0, 40}], x]] (* Vincenzo Librandi, Nov 03 2014 *)
    Table[Hypergeometric2F1[1/2, -n+1, 2, -4], {n, 1, 30}] (* Vaclav Kotesovec, May 12 2022 *)
  • PARI
    {a(n) = my(A); if( n<2, n>0, A=vector(n); for(j=1,n, A[j] = 1 + sum(k=1,j-1, A[k]*A[j-k])); A[n])}; /* Michael Somos, May 23 2005 */
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( serreverse( (x - x^2) / (1 + x - x^2) + x * O(x^n)), n))}; /* Michael Somos, May 23 2005 */
    
  • PARI
    /* Offset = 0: */ {a(n)=local(A=1+x);for(i=1,n, A=sum(m=0,n, x^m*sum(k=0,m,A^k)+x*O(x^n))); polcoeff(A,n)} \\ Paul D. Hanna

Formula

(n+2)*a(n+2) = (6n+4)*a(n+1) - 5n*a(n).
G.f.: 3/2-(1/2)*sqrt((1-5*x)/(1-x)) [Gessel-Kim]. - N. J. A. Sloane, Jul 05 2014
G.f. for sequence doubled: (1/(2*x))*(1+x-(1-x)^(-1)*(1-x^2)^(1/2)*(1-5*x^2)^(1/2)).
a(n) = hypergeom([1/2, -n], [2], -4), n=0, 1, 2...; Integral representation as n-th moment of a positive function on a finite interval of the positive half-axis: a(n)=int(x^n*sqrt((5-x)/(x-1))/(2*Pi), x=1..5), n=0, 1, 2... This representation is unique. - Karol A. Penson, Sep 24 2001
a(1)=1, a(n)=1+sum(i=1, n-1, a(i)*a(n-i)). - Benoit Cloitre, Mar 16 2004
a(n) = Sum_{k=0..n} (-1)^k*3^(n-k)*binomial(n, k)*binomial(k, floor(k/2)) [offset 0]. - Paul Barry, Jan 27 2005
G.f. A(x) satisfies 0=f(x, A(x)) where f(x, y)=x-(1-x)(y-y^2). - Michael Somos, May 23 2005
G.f. A(x) satisfies 0=f(x, A(x), A(A(x))) where f(x, y, z)=x(z-z^2)+(x-1)y^2 . - Michael Somos, May 23 2005
G.f. (for offset 0): (-1+x+(1-6*x+5*x^2)^(1/2))/(2*(-x+x^2)).
G.f. =z*c(z/(1-z))/(1-z) = 1/2 - (1/2)sqrt(1-4z/(1-z)), where c(z)=(1-sqrt(1-4z))/(2z) is the Catalan function (follows from Michael Somos' first comment). - Emeric Deutsch, Aug 12 2007
G.f.: 1/(1-2x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-.... (continued fraction). - Paul Barry, Apr 19 2009
a(n) = Sum_{k, 0<=k<=n} A091965(n,k)*(-1)^k. - Philippe Deléham, Nov 28 2009
E.g.f.: exp(3x)*(I_0(2x)-I_1(2x)), where I_k(x) is a modified Bessel function of the first kind. - Emanuele Munarini, Apr 15 2011
If we prefix sequence with an additional term a(0)=1, g.f. is (3-3*x-sqrt(1-6*x+5*x^2))/(2*(1-x)). [See Kim, 2011] - N. J. A. Sloane, May 13 2011
From Gary W. Adamson, Jul 21 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:
2, 1, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 1, 2, 1, 0, 0, ...
1, 1, 1, 2, 1, 0, ...
1, 1, 1, 1, 2, 1, ...
1, 1, 1, 1, 1, 2, ...
... (End)
G.f. satisfies: A(x) = Sum_{n>=0} x^n * (1 - A(x)^(n+1))/(1 - A(x)); offset=0. - Paul D. Hanna, Nov 07 2011
G.f.: 1/x - 1/x/Q(0), where Q(k)= 1 + (4*k+1)*x/((1-x)*(k+1) - x*(1-x)*(2*k+2)*(4*k+3)/(x*(8*k+6)+(2*k+3)*(1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013
G.f.: (1-x - (1-5*x)*G(0))/(2*x*(1-x)), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 25 2013
Asymptotics (for offset 0): a(n) ~ 5^(n+3/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 28 2013
G.f.: G(0)/(1-x), where G(k) = 1 + (4*k+1)*x/((k+1)*(1-x) - 2*x*(1-x)*(k+1)*(4*k+3)/(2*x*(4*k+3) + (2*k+3)*(1-x)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 29 2014
a(n) = JacobiP(n-1,1,-n-1/2,9)/n. - Peter Luschny, Sep 23 2014
0 = +a(n)*(+25*a(n+1) -50*a(n+2) +15*a(n+3)) +a(n+1)*(-10*a(n+1) +31*a(n+2) -14*a(n+3)) +a(n+2)*(+2*a(n+2) +a(n+3)) for all n in Z. - Michael Somos, Jan 17 2018
a(n+1) = (2/Pi) * Integral_{x = -1..1} (m + 4*x^2)^n*sqrt(1 - x^2) dx at m = 1. In general, the integral, qua sequence in n, gives the m-th binomial transform of the Catalan numbers. - Peter Bala, Jan 26 2020

A098474 Triangle read by rows, T(n,k) = C(n,k)*C(2*k,k)/(k+1), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 20, 14, 1, 5, 20, 50, 70, 42, 1, 6, 30, 100, 210, 252, 132, 1, 7, 42, 175, 490, 882, 924, 429, 1, 8, 56, 280, 980, 2352, 3696, 3432, 1430, 1, 9, 72, 420, 1764, 5292, 11088, 15444, 12870, 4862, 1, 10, 90, 600, 2940, 10584, 27720
Offset: 0

Views

Author

Paul Barry, Sep 09 2004

Keywords

Comments

A Catalan scaled binomial matrix.
From Philippe Deléham, Sep 01 2005: (Start)
Table U(n,k), k >= 0, n >= 0, read by antidiagonals, begins:
row k = 0: 1, 1, 2, 5, 14, ... is A000108
row k = 1: 1, 2, 6, 20, 70, ... is A000984
row k = 2: 1, 3, 12, 50, 280, ... is A007854
row k = 3: 1, 4, 20, 104, 548, ... is A076035
row k = 4: 1, 5, 30, 185, 1150, ... is A076036
G.f. for row k: 1/(1-(k+1)*x*C(x)) where C(x) is the g.f. = for Catalan numbers A000108.
U(n,k) = Sum_{j=0..n} A106566(n,j)*(k+1)^j. (End)
This sequence gives the coefficients (increasing powers of x) of the Jensen polynomials for the Catalan sequence A000108 of degree n and shift 0. For the definition of Jensen polynomials for a sequence see a comment in A094436. - Wolfdieter Lang, Jun 25 2019

Examples

			Rows begin:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  6,   5;
  1, 4, 12,  20,  14;
  1, 5, 20,  50,  70,  42;
  1, 6, 30, 100, 210, 252, 132;
  ...
Row 3: t*(1 - 3*t + 6*t^2 - 5*t^3)/(1 - 4*t)^(9/2) = 1/2*Sum_{k >= 1} k*(k+1)*(k+2)*(k+3)/4!*binomial(2*k,k)*t^k. - _Peter Bala_, Jun 13 2016
		

Crossrefs

Row sums are A007317.
Antidiagonal sums are A090344.
Principal diagonal is A000108.
Mirror image of A124644.

Programs

  • Maple
    p := proc(n) option remember; if n = 0 then 1 else normal((x*(1 + 4*x)*diff(p(n-1, x), x) + (2*x + n + 1)*p(n-1, x))/(n + 1)) fi end:
    row := n -> local k; seq(coeff(p(n), x, k), k = 0..n):
    for n from 0 to 6 do row(n) od;  # Peter Luschny, Jun 21 2023
  • Mathematica
    Table[Binomial[n, k] Binomial[2 k, k]/(k + 1), {n, 0, 10}, {k, 0, n}] // Flatten (* or *)
    Table[(-1)^k*CatalanNumber[k] Pochhammer[-n, k]/k!, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)
  • Python
    from functools import cache
    @cache
    def A098474row(n: int) -> list[int]:
        if n == 0: return [1]
        a = A098474row(n - 1) + [0]
        row = [0] * (n + 1)
        row[0] = 1; row[1] = n
        for k in range(2, n + 1):
            row[k] = (a[k] * (n + k + 1) + a[k - 1] * (4 * k - 2)) // (n + 1)
        return row  # Peter Luschny, Jun 22 2023
  • Sage
    def A098474(n,k):
        return (-1)^k*catalan_number(k)*rising_factorial(-n,k)/factorial(k)
    for n in range(7): [A098474(n,k) for k in (0..n)] # Peter Luschny, Feb 05 2015
    

Formula

G.f.: 2/(1-x+(1-x-4*x*y)^(1/2)). - Vladeta Jovovic, Sep 11 2004
E.g.f.: exp(x*(1+2*y))*(BesselI(0, 2*x*y)-BesselI(1, 2*x*y)). - Vladeta Jovovic, Sep 11 2004
G.f.: 1/(1-x-xy/(1-xy/(1-x-xy/(1-xy/(1-x-xy/(1-xy/(1-x-xy/(1-xy/(1-... (continued fraction). - Paul Barry, Feb 11 2009
Sum_{k=0..n} T(n,k)*x^(n-k) = A126930(n), A005043(n), A000108(n), A007317(n+1), A064613(n), A104455(n) for x = -2, -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Dec 12 2009
T(n,k) = (-1)^k*Catalan(k)*Pochhammer(-n,k)/k!. - Peter Luschny, Feb 05 2015
O.g.f.: [1 - sqrt(1-4tx/(1-x))]/(2tx) = 1 + (1+t) x + (1+2t+2t^2) x^2 + (1+3t+6t^2+5t^3) x^3 + ... , generating the polynomials of this entry, reverse of A124644. See A011973 for a derivation and the inverse o.g.f., connected to the Fibonacci, Chebyshev, and Motzkin polynomials. See also A267633. - Tom Copeland, Jan 25 2016
From Peter Bala, Jun 13 2016: (Start)
The o.g.f. F(x,t) = ( 1 - sqrt(1 - 4*t*x/(1 - x)) )/(2*t*x) satisfies the partial differential equation d/dx(x*(1 - x)*F) - x*t*(1 + 4*t)*dF/dt - 2*x*t*F = 1. This gives a recurrence for the row polynomials: (n + 2)*R(n+1,t) = t*(1 + 4*t)*R'(n,t) + (2*t + n + 2)*R(n,t), where the prime ' indicates differentiation with respect to t.
Equivalently, setting Q(n,t) = t^(n+2)*R(n,-t)/(1 - 4*t)^(n + 3/2) we have t^2*d/dt(Q(n,t)) = (n + 2)*Q(n+1,t).
This leads to the following expansions:
Q(0,t) = (1/2)*Sum_{k >= 1} k*binomial(2*k,k)*t^(k+1)
Q(1,t) = (1/2)*Sum_{k >= 1} k*(k+1)/2!*binomial(2*k,k)*t^(k+2)
Q(2,t) = (1/2)*Sum_{k >= 1} k*(k+1)*(k+2)/3!*binomial(2*k,k) *t^(k+3) and so on. (End)
Sum_{k=0..n} T(n,k)*x^k = A007317(n+1), A162326(n+1), A337167(n) for x = 1, 2, 3 respectively. - Sergii Voloshyn, Mar 31 2022

Extensions

New name using a formula of Paul Barry by Peter Luschny, Feb 05 2015

A337167 a(n) = 1 + 3 * Sum_{k=0..n-1} a(k) * a(n-k-1).

Original entry on oeis.org

1, 4, 25, 199, 1795, 17422, 177463, 1870960, 20241403, 223438852, 2506596547, 28494103183, 327507800725, 3799735202218, 44440058006593, 523388751658831, 6201937444137619, 73888034816382820, 884517283667145259, 10634234680321209373, 128347834921058404249
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 28 2021

Keywords

Comments

Binomial transform of A005159.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + 3 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 20}]
    Table[Sum[Binomial[n, k] 3^k CatalanNumber[k], {k, 0, n}], {n, 0, 20}]
    Table[Hypergeometric2F1[1/2, -n, 2, -12], {n, 0, 20}]
  • PARI
    {a(n) = sum(k=0, n, 3^k*binomial(n, k)*(2*k)!/(k!*(k+1)!))} \\ Seiichi Manyama, Jan 31 2021
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(2/(1-x+sqrt((1-x)*(1-13*x)))) \\ Seiichi Manyama, Feb 01 2021

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x) + 3*x*A(x)^2.
G.f.: (1 - sqrt(1 - 12*x / (1 - x))) / (6*x).
E.g.f.: exp(7*x) * (BesselI(0,6*x) - BesselI(1,6*x)).
a(n) = Sum_{k=0..n} binomial(n,k) * 3^k * Catalan(k).
a(n) = 2F1([1/2, -n], [2], -12), where 2F1 is the hypergeometric function.
D-finite with recurrence (n+1) * a(n) = 2 * (7*n-3) * a(n-1) - 13 * (n-1) * a(n-2) for n > 1. - Seiichi Manyama, Jan 31 2021
a(n) ~ 13^(n + 3/2) / (8 * 3^(3/2) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 14 2021

A338979 a(n) = Sum_{k=0..n} n^k * binomial(n,k) * Catalan(k).

Original entry on oeis.org

1, 2, 13, 199, 5073, 181776, 8413021, 478070020, 32238960193, 2517734880838, 223558608409101, 22248413487603887, 2453271411779452369, 296925818848604834448, 39138393489232585787037, 5581250331202285217569351, 856182695406472437496803585, 140595282922234695782098680030
Offset: 0

Views

Author

Seiichi Manyama, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([1/2, -n], [2], -4*n):
    seq(simplify(a(n)), n = 0..17);  # Peter Luschny, Aug 27 2025
  • Mathematica
    A338979[n_] :=  Sum[n^k*Binomial[n, k]*(2*k)!/(k!*(k + 1)!), {k, 0, n}];
    Join[{1}, Table[A338979[n], {n, 1, 17}]] (* Robert P. P. McKone, Jan 31 2021 *)
    A338979[n_] := Hypergeometric2F1[1/2, -n, 2, -4*n]; Table[A338979[n], {n, 0, 17}]  (* Peter Luschny, Aug 27 2025 *)
  • PARI
    {a(n) = sum(k=0, n, n^k*binomial(n, k)*(2*k)!/(k!*(k+1)!))}

Formula

a(n) = n! * [x^n] exp((2*n+1)*x) * (BesselI(0,2*n*x) - BesselI(1,2*n*x)). - Ilya Gutkovskiy, Feb 02 2021
a(n) ~ exp(1/4) * 4^n * n^(n - 3/2) / sqrt(Pi). - Vaclav Kotesovec, Feb 14 2021
a(n) = hypergeom([1/2, -n], [2], -4*n). - Peter Luschny, Aug 27 2025

A349253 G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - 2 * x * A(x)^2)).

Original entry on oeis.org

1, 3, 19, 169, 1753, 19795, 236035, 2923857, 37256881, 485202307, 6429346899, 86405569657, 1174917167881, 16134949855251, 223460304878467, 3117521211476641, 43771643214792033, 618045740600046211, 8770377489446217235, 125013010654218317385, 1789104455068153153849
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1/((1 - x) (1 - 2 x A[x]^2)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = 1 + 2 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 20}]
    Table[Sum[Binomial[n + k, n - k] 2^k Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 20}]
    a[n_] := HypergeometricPFQ[{1/3,2/3,-n,n + 1}, {1/2,1,3/2}, -(3/2)^3];
    Table[a[n], {n, 0, 20}] (* Peter Luschny, Nov 12 2021 *)

Formula

a(n) = 1 + 2 * Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} binomial(n+k,n-k) * 2^k * binomial(3*k,k) / (2*k+1).
a(n) = hypergeom([1/3, 2/3, -n, n + 1], [1/2, 1, 3/2], -(3/2)^3). - Peter Luschny, Nov 12 2021
a(n) ~ sqrt(315 + 31*sqrt(105)) * (31 + 3*sqrt(105))^n / (9 * sqrt(Pi) * 2^(2*n + 5/2) * n^(3/2)). - Vaclav Kotesovec, Nov 13 2021

A340968 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j*binomial(n,j)*Catalan(j).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 15, 1, 1, 5, 25, 71, 51, 1, 1, 6, 41, 199, 441, 188, 1, 1, 7, 61, 429, 1795, 2955, 731, 1, 1, 8, 85, 791, 5073, 17422, 20805, 2950, 1, 1, 9, 113, 1315, 11571, 64469, 177463, 151695, 12235, 1
Offset: 0

Views

Author

Seiichi Manyama, Jan 31 2021

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,     1,      1, ...
  1,   2,    3,     4,     5,      6, ...
  1,   5,   13,    25,    41,     61, ...
  1,  15,   71,   199,   429,    791, ...
  1,  51,  441,  1795,  5073,  11571, ...
  1, 188, 2955, 17422, 64469, 181776, ...
		

Crossrefs

Columns k=0..4 give A000012, A007317(n+1), A162326(n+1), A337167, A386387.
Main diagonal gives A338979.

Programs

  • Maple
    T_row := n -> k -> hypergeom([1/2, -n], [2], -4*k): for n from 0 to 6 do seq(simplify(T_row(n)(k)), k = 0..6) od; # Peter Luschny, Aug 27 2025
  • Mathematica
    T[n_, k_] := Sum[If[j == k == 0, 1, k^j] * Binomial[n, j] * CatalanNumber[j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 01 2021 *)
    A340968[n_, k_] := Hypergeometric2F1[1/2, -n, 2, -4*k]; Table[A340968[n, k], {n, 0, 6}, {k, 0, 7}] (* row-wise *) (* Peter Luschny, Aug 27 2025 *)
  • PARI
    T(n, k) = sum(j=0, n, k^j*binomial(n, j)*(2*j)!/(j!*(j+1)!));
    
  • PARI
    T(n, k) = 1+k*sum(j=0, n-1, T(j, k)*T(n-1-j, k));

Formula

G.f. A_k(x) of column k satisfies A_k(x) = 1/(1 - x) + k*x*A_k(x)^2.
A_k(x) = 2/( 1 - x + sqrt((1 - x) * (1 - (4*k+1)*x)) ).
T(n,k) = 1 + k * Sum_{j=0..n-1} T(j,k) * T(n-1-j,k).
(n+1) * T(n,k) = 2 * ((2*k+1) * n - k) * T(n-1,k) - (4*k+1) * (n-1) * T(n-2,k) for n > 1.
E.g.f. of column k: exp((2*k+1)*x) * (BesselI(0,2*k*x) - BesselI(1,2*k*x)). - Ilya Gutkovskiy, Feb 01 2021
T_row(n) = k -> hypergeom([1/2, -n], [2], -4*k). - Peter Luschny, Aug 27 2025

A003262 Let y=f(x) satisfy F(x,y)=0. a(n) is the number of terms in the expansion of (d/dx)^n y in terms of the partial derivatives of F.

Original entry on oeis.org

1, 3, 9, 24, 61, 145, 333, 732, 1565, 3247, 6583, 13047, 25379, 48477, 91159, 168883, 308736, 557335, 994638, 1755909, 3068960, 5313318, 9118049, 15516710, 26198568, 43904123, 73056724, 120750102, 198304922, 323685343
Offset: 1

Views

Author

Keywords

Examples

			(d/dx)^2 y = -F_xx/F_y + 2*F_x*F_xy/F_y^2 - F_x^2*F_yy/F_y^3, where F_x denotes partial derivative with respect to x, etc. This has three terms, thus a(2)=3.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 175.
  • L. Comtet and M. Fiolet, Sur les dérivées successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A098504.
Cf. A172004 (generalization to bivariate implicit functions).
Cf. A162326 (analogous sequence for implicit divided differences).
Cf. A172003 (bivariate variant).

Programs

  • Mathematica
    p[, ] = 0; q[, ] = 0; e = 30; For[m = 1, m <= e - 1, m++, For[d = 1, d <= m, d++, If[m == d*Floor[m/d], For[i = 0, i <= m/d + 1, i++, If[d*i <= e, q[m, i*d] = q[m, i*d] + 1/d]]]]]; For[j = 0, j <= e, j++, p[0, j] = 1]; For[n = 1, n <= e - 1, n++, For[s = 0, s <= n, s++, For[j = 0, j <= e, j++, For[i = 0, i <= j, i++, p[n, j] = p[n, j] + (1/n)*s*q[s, j - i]*p[n - s, i]]]]]; A003262 = Table[p[n - 1, n], {n, 1, e}](* Jean-François Alcover, after Tom Wilde *)
  • VBA
    ' Tom Wilde, Jan 19 2008
    Sub Calc_AofN_upto_E()
    E = 30
    ReDim p(0 To E - 1, 0 To E)
    ReDim q(0 To E - 1, 0 To E)
    For m = 1 To E - 1
      For d = 1 To m
        If m = d * Int(m / d) Then
          For i = 0 To m / d + 1
            If d * i <= E Then q(m, i * d) = q(m, i * d) + 1 / d
          Next
        End If
      Next
    Next
    For j = 0 To E
      p(0, j) = 1
    Next
    For n = 1 To E - 1
      For s = 0 To n
        For j = 0 To E
          For i = 0 To j
            p(n, j) = p(n, j) + 1 / n * s * q(s, j - i) * p(n - s, i)
          Next
        Next
      Next
    Next
    For n = 1 To E
       Debug.Print p(n - 1, n)
    Next
    End Sub

Formula

The generating function given by Comtet and Fiolet is incorrect.
a(n) = coefficient of t^n*u^(n-1) in Product_{i,j>=0,(i,j)<>(0,1)} (1 - t^i*u^(i+j-1))^(-1). - Tom Wilde (tom(AT)beech84.fsnet.co.uk), Jan 19 2008

Extensions

More terms from Tom Wilde (tom(AT)beech84.fsnet.co.uk), Jan 19 2008

A337168 a(n) = (-1)^n + 2 * Sum_{k=0..n-1} a(k) * a(n-k-1).

Original entry on oeis.org

1, 1, 5, 21, 105, 553, 3053, 17405, 101713, 606033, 3667797, 22485477, 139340985, 871429497, 5492959293, 34862161869, 222592918689, 1428814897825, 9215016141989, 59684122637237, 388045493943049, 2531696701375689, 16569559364596365, 108758426952823709
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 28 2021

Keywords

Comments

Inverse binomial transform of A151374.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = (-1)^n + 2 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 23}]
    Table[Sum[(-1)^(n - k) Binomial[n, k] 2^k CatalanNumber[k], {k, 0, n}], {n, 0, 23}]
    Table[(-1)^n Hypergeometric2F1[1/2, -n, 2, 8], {n, 0, 23}]

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 + x) + 2*x*A(x)^2.
G.f.: (1 - sqrt(1 - 8*x / (1 + x))) / (4*x).
E.g.f.: exp(3*x) * (BesselI(0,4*x) - BesselI(1,4*x)).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * 2^k * Catalan(k).
a(n) ~ 7^(n + 3/2) / (2^(9/2) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 13 2021

A172003 Let y = y(u,v) be implicitly defined by g(u,v,y(u,v)) = 0. Read as a triangle by rows, the sequence represents the number of terms a(i,k-i) in the expansion of the bivariate divided difference [u_0,...,u_i; v_0,...,v_{k-i}]y in terms of trivariate divided differences of g.

Original entry on oeis.org

1, 1, 3, 5, 3, 13, 33, 33, 13, 71, 245, 351, 245, 71, 441, 1921, 3597, 3597, 1921, 441, 2955, 15525, 35931, 46709, 35931, 15525, 2955, 20805, 127905, 352665, 563821, 563821, 352665, 127905, 20805, 151695, 1067925, 3417975, 6483285, 7963151
Offset: 1

Views

Author

Georg Muntingh, Jan 22 2010

Keywords

Comments

The sequence starts with a(1,0),a(0,1),a(2,0),a(1,1),a(0,2),a(3,0),...

Examples

			The subsequences a(1,0),a(2,0),a(3,0),... and a(0,1),a(0,2),a(0,3),... coincide with the sequence A162326.
For (m,n) = (1,1), one expresses [u_0,u_1;v_0,v_1]y as a sum of 5 terms,
[01;01]y =
- [0;0;(0,0),(1,0),(1,1)]g * [01;0;(1,0)]g * [1;01;(1,1)]g /
( [0;0;(0,0),(1,1)]g * [0;0;(0,0),(1,0)]g * [1;0;(1,0),(1,1)]g )
+ [01;0;(1,0),(1,1)]g * [1;01;(1,1)]g /
( [0;0;(0,0),(1,1)]g * [1;0;(1,0),(1,1)]g )
- [01;01;(1,1)]g / [0;0;(0,0),(1,1)]g
- [0;0;(0,0),(0,1),(1,1)]g * [0;01;(0,1)]g * [01;1;(1,1)]g /
( [0;0;(0,0),(1,1)]g * [0;0;(0,0),(0,1)]g * [0;1;(0,1),(1,1)]g )
+ [0;01;(0,1),(1,1)]g * [01;1;(1,1)]g /
( [0;0;(0,0),(1,1)]g * [0;1;(0,1),(1,1)]g ),
where the numbers refer to the indices of the corresponding variable, e.g.
[1;01;(1,1)]g = [u_1;v_0,v_1;y(u_1,v_1)]g.
		

Crossrefs

Cf. A162326, which is the univariate variant of this sequence.
Cf. A172004, which is the analogous sequence for implicit derivatives, and A003262 for its univariate variant.

Programs

  • Sage
    R. = PolynomialRing(ZZ,3)
    def P(n1,n2,q):
        E = cartesian_product([list(range(n1+1)), list(range(n2+1)), list(range(n1+n2+1))])
        E = [(i1,i2,j) for (i1,i2,j) in E if (i1,i2,j) != (0,0,0) and
             (i1,i2,j) != (0,0,1) and i1 + i2 + j <= n1 + n2 and
             2*(i1 + i2) + j - 1 <= 2*(n1+n2) - q]
        return R.sum(X1^s1 * X2^s2 * Y^(s1+s2+t-1) for s1,s2,t in E)
    n1, n2 = 4, 4
    L = [[0 for _ in range(n1 + 1)]] * (n2 + 1)
    h = 1 + sum(((P(n1,n2,q))^q)/q for q in range(1,2*(n1+n2)))
    for k1 in range(n1+1):
        for k2 in range(k1+1):
            if (k1, k2) != (0, 0):
                print(k1, k2, h.coefficient({X1:k1, X2:k2, Y:k1+k2-1}))

Formula

Let E = N^3 \ {(0,0,0), (0,0,1)} be a set of triples of natural numbers. The number of terms a(m,n) is the coefficient of u^m * v^n * y^{m+n-1} of the generating function
- log(1 - Sum_{(r,s,t) in E} u^r * v^s * y^{r+s+t-1})
= Sum_{q >= 1} (Sum_{(r,s,t) in E} u^r * v^s * y^{r+s+t-1})^q / q.

A172004 Let y = y(u,v) be implicitly defined by g(u,v,y(u,v)) = 0. Read as a triangle by rows k = 1,2,..., the sequence represents the number of terms a(i,k-i) in the expansion of the partial derivatives d^k y/du^i dv^{k-i} in terms of partial derivatives of g.

Original entry on oeis.org

1, 1, 3, 4, 3, 9, 15, 15, 9, 24, 47, 59, 47, 24, 61, 136, 195, 195, 136, 61, 145, 360, 580, 663, 580, 360, 145, 333, 904, 1586, 2032, 2032, 1586, 904, 333, 732, 2152, 4077, 5684, 6350, 5684, 4077, 2152, 732, 1565, 4927, 9948, 14938, 18123, 18123, 14938, 9948
Offset: 1

Views

Author

Georg Muntingh, Jan 22 2010

Keywords

Comments

The sequence starts with a(1,0),a(0,1),a(2,0),a(1,1),a(0,2),a(3,0),...
The subsequences a(1,0),a(2,0),a(3,0),... and a(0,1),a(0,2),a(0,3),... coincide with the sequence A003262, which is the corresponding sequence for univariate implicit functions.

Examples

			The formulas dy/du = -g_u/g_y,
d^2y/du^2 = -g_yy g_u^2/g_y^3 + 2g_uy g_u/g_y^2 - g_uu/g_y,
d^2y/dudv = -2g_yy g_u g_v / g_y^3 + g_uy g_v/g_y^2 + g_vy g_u/g_y^3 - g_uv/g_y
imply that a(1,0) = 1, a(2,0) = 3, and a(1,1) = 4.
		

Crossrefs

Cf. A003262, which is the univariate variant of this sequence.
Cf. A172003, which is the analogous sequence for implicit divided differences, and A162326 for its univariate variant.

Programs

  • Sage
    # Upon executing the following code in Sage 4.2 (using Singular as a backend), it
    # computes the number of terms a(n1,n2) and stores it in the entry A[n1][n2] of the
    # double list A.
    N = 9
    E1 = N
    E2 = N
    p = [[[0 for i1 in range(E1+1)] for i2 in range(E2+1)] for j in range(E1 + E2)]
    q = [[[0 for i1 in range(E1+1)] for i2 in range(E2+1)] for j in range(E1 + E2)]
    for m in range(1, E1 + E2):
        for d in range(1, m+1):
            quotient, remainder = divmod(m, d)
            if remainder == 0:
                for i1 in range(quotient + 1 + 1):
                    for i2 in range(quotient + 1 - i1 + 1):
                        if d*i1 <= E1 and d*i2 <= E2:
                            q[m][i1*d][i2*d] += 1/d
    for i1 in range(E1 + 1):
        for i2 in range(E2 + 1):
            p[0][i1][i2] = 1
    for n in range(1, E1 + E2):
        for s in range(n+1):
            for k1 in range(E1+1):
                for k2 in range(E2+1):
                    for i1 in range(k1 + 1):
                        for i2 in range(k2 + 1):
                            p[n][k1][k2] += 1/n * s * q[s][k1-i1][k2-i2] * p[n-s][i1][i2]
    A = [[ p[n1+n2-1][n1][n2] for n1 in range(E1+1)] for n2 in range(E2+1)]

Formula

Let E = N^3 \ {(0,0,0), (0,0,1)} be a set of triples of natural numbers. The number of terms a(m,n) is the coefficient of u^m * v^n * y^{m+n-1} in Product_{(r,s,t) in E} (1 - u^r * v^s * y^{r+s+t-1})^{-1}.
Showing 1-10 of 13 results. Next