A337167
a(n) = 1 + 3 * Sum_{k=0..n-1} a(k) * a(n-k-1).
Original entry on oeis.org
1, 4, 25, 199, 1795, 17422, 177463, 1870960, 20241403, 223438852, 2506596547, 28494103183, 327507800725, 3799735202218, 44440058006593, 523388751658831, 6201937444137619, 73888034816382820, 884517283667145259, 10634234680321209373, 128347834921058404249
Offset: 0
-
a[n_] := a[n] = 1 + 3 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 20}]
Table[Sum[Binomial[n, k] 3^k CatalanNumber[k], {k, 0, n}], {n, 0, 20}]
Table[Hypergeometric2F1[1/2, -n, 2, -12], {n, 0, 20}]
-
{a(n) = sum(k=0, n, 3^k*binomial(n, k)*(2*k)!/(k!*(k+1)!))} \\ Seiichi Manyama, Jan 31 2021
-
my(N=20, x='x+O('x^N)); Vec(2/(1-x+sqrt((1-x)*(1-13*x)))) \\ Seiichi Manyama, Feb 01 2021
A340970
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * binomial(2*j,j).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 1, 7, 33, 45, 1, 1, 9, 67, 245, 195, 1, 1, 11, 113, 721, 1921, 873, 1, 1, 13, 171, 1593, 8179, 15525, 3989, 1, 1, 15, 241, 2981, 23649, 95557, 127905, 18483, 1, 1, 17, 323, 5005, 54691, 361449, 1137709, 1067925, 86515, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 11, 33, 67, 113, 171, ...
1, 45, 245, 721, 1593, 2981, ...
1, 195, 1921, 8179, 23649, 54691, ...
1, 873, 15525, 95557, 361449, 1032801, ...
-
T[n_, k_] := Sum[If[j == k == 0, 1, k^j] * Binomial[n, j] * Binomial[2*j, j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 01 2021 *)
-
T(n, k) = sum(j=0, n, k^j*binomial(n, j)*binomial(2*j, j));
-
T(n, k) = polcoef((1+(2*k+1)*x+(k*x)^2)^n, n);
A386387
a(n) = Sum_{k=0..n} 4^k * binomial(n,k) * Catalan(k).
Original entry on oeis.org
1, 5, 41, 429, 5073, 64469, 859385, 11853949, 167763361, 2422342053, 35543185353, 528450589005, 7943934373233, 120537517728117, 1843702988611737, 28397640862311453, 440070304667718465, 6856488470912854853, 107340528355762710377, 1687682549936270584045
Offset: 0
-
[&+[4^k*Binomial(n,k) * Catalan(k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 27 2025
-
Table[Sum[4^k*Binomial[n,k]*CatalanNumber[k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 27 2025 *)
A386387[n_] := Hypergeometric2F1[1/2, -n, 2, -16]; Table[A386387[n], {n, 0, 19}] (* Peter Luschny, Aug 27 2025 *)
-
a(n) = sum(k=0, n, 4^k*binomial(n, k)*(2*k)!/(k!*(k+1)!));
A386408
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * Catalan(j+1).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 10, 1, 1, 7, 29, 36, 1, 1, 9, 58, 185, 137, 1, 1, 11, 97, 532, 1257, 543, 1, 1, 13, 146, 1161, 5209, 8925, 2219, 1, 1, 15, 205, 2156, 14849, 53347, 65445, 9285, 1, 1, 17, 274, 3601, 34041, 198729, 564499, 491825, 39587, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, ...
1, 10, 29, 58, 97, 146, 205, ...
1, 36, 185, 532, 1161, 2156, 3601, ...
1, 137, 1257, 5209, 14849, 34041, 67657, ...
1, 543, 8925, 53347, 198729, 562551, 1330693, ...
1, 2219, 65445, 564499, 2748641, 9608811, 27053749, ...
-
a(n, k) = sum(j=0, n, k^j*binomial(n, j)*(2*(j+1))!/((j+1)!*(j+2)!));
Showing 1-4 of 4 results.
Comments