A340968 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j*binomial(n,j)*Catalan(j).
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 15, 1, 1, 5, 25, 71, 51, 1, 1, 6, 41, 199, 441, 188, 1, 1, 7, 61, 429, 1795, 2955, 731, 1, 1, 8, 85, 791, 5073, 17422, 20805, 2950, 1, 1, 9, 113, 1315, 11571, 64469, 177463, 151695, 12235, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, ... 1, 5, 13, 25, 41, 61, ... 1, 15, 71, 199, 429, 791, ... 1, 51, 441, 1795, 5073, 11571, ... 1, 188, 2955, 17422, 64469, 181776, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Maple
T_row := n -> k -> hypergeom([1/2, -n], [2], -4*k): for n from 0 to 6 do seq(simplify(T_row(n)(k)), k = 0..6) od; # Peter Luschny, Aug 27 2025
-
Mathematica
T[n_, k_] := Sum[If[j == k == 0, 1, k^j] * Binomial[n, j] * CatalanNumber[j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 01 2021 *) A340968[n_, k_] := Hypergeometric2F1[1/2, -n, 2, -4*k]; Table[A340968[n, k], {n, 0, 6}, {k, 0, 7}] (* row-wise *) (* Peter Luschny, Aug 27 2025 *)
-
PARI
T(n, k) = sum(j=0, n, k^j*binomial(n, j)*(2*j)!/(j!*(j+1)!));
-
PARI
T(n, k) = 1+k*sum(j=0, n-1, T(j, k)*T(n-1-j, k));
Formula
G.f. A_k(x) of column k satisfies A_k(x) = 1/(1 - x) + k*x*A_k(x)^2.
A_k(x) = 2/( 1 - x + sqrt((1 - x) * (1 - (4*k+1)*x)) ).
T(n,k) = 1 + k * Sum_{j=0..n-1} T(j,k) * T(n-1-j,k).
(n+1) * T(n,k) = 2 * ((2*k+1) * n - k) * T(n-1,k) - (4*k+1) * (n-1) * T(n-2,k) for n > 1.
E.g.f. of column k: exp((2*k+1)*x) * (BesselI(0,2*k*x) - BesselI(1,2*k*x)). - Ilya Gutkovskiy, Feb 01 2021
T_row(n) = k -> hypergeom([1/2, -n], [2], -4*k). - Peter Luschny, Aug 27 2025