A386362
Expansion of (1/x) * Series_Reversion( x/(1+7*x+9*x^2) ).
Original entry on oeis.org
1, 7, 58, 532, 5209, 53347, 564499, 6123481, 67732483, 761052565, 8662502212, 99671232514, 1157409133831, 13546774268125, 159649564550746, 1892849564159596, 22562032457415067, 270209749616920813, 3249905798884688038, 39237866746912398292, 475388228365424562019
Offset: 0
A386387
a(n) = Sum_{k=0..n} 4^k * binomial(n,k) * Catalan(k).
Original entry on oeis.org
1, 5, 41, 429, 5073, 64469, 859385, 11853949, 167763361, 2422342053, 35543185353, 528450589005, 7943934373233, 120537517728117, 1843702988611737, 28397640862311453, 440070304667718465, 6856488470912854853, 107340528355762710377, 1687682549936270584045
Offset: 0
-
[&+[4^k*Binomial(n,k) * Catalan(k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 27 2025
-
Table[Sum[4^k*Binomial[n,k]*CatalanNumber[k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 27 2025 *)
A386387[n_] := Hypergeometric2F1[1/2, -n, 2, -16]; Table[A386387[n], {n, 0, 19}] (* Peter Luschny, Aug 27 2025 *)
-
a(n) = sum(k=0, n, 4^k*binomial(n, k)*(2*k)!/(k!*(k+1)!));
A386408
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * Catalan(j+1).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 10, 1, 1, 7, 29, 36, 1, 1, 9, 58, 185, 137, 1, 1, 11, 97, 532, 1257, 543, 1, 1, 13, 146, 1161, 5209, 8925, 2219, 1, 1, 15, 205, 2156, 14849, 53347, 65445, 9285, 1, 1, 17, 274, 3601, 34041, 198729, 564499, 491825, 39587, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, ...
1, 10, 29, 58, 97, 146, 205, ...
1, 36, 185, 532, 1161, 2156, 3601, ...
1, 137, 1257, 5209, 14849, 34041, 67657, ...
1, 543, 8925, 53347, 198729, 562551, 1330693, ...
1, 2219, 65445, 564499, 2748641, 9608811, 27053749, ...
-
a(n, k) = sum(j=0, n, k^j*binomial(n, j)*(2*(j+1))!/((j+1)!*(j+2)!));
Showing 1-3 of 3 results.