cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386362 Expansion of (1/x) * Series_Reversion( x/(1+7*x+9*x^2) ).

Original entry on oeis.org

1, 7, 58, 532, 5209, 53347, 564499, 6123481, 67732483, 761052565, 8662502212, 99671232514, 1157409133831, 13546774268125, 159649564550746, 1892849564159596, 22562032457415067, 270209749616920813, 3249905798884688038, 39237866746912398292, 475388228365424562019
Offset: 0

Views

Author

Seiichi Manyama, Aug 20 2025

Keywords

Crossrefs

Column k=3 of A386408.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+7*x+9*x^2))/x)

Formula

G.f.: 2/(1 - 7*x + sqrt((1-x) * (1-13*x))).
a(n) = (A337167(n+1) - A337167(n))/3.
(n+2)*a(n) = 7*(2*n+1)*a(n-1) - 13*(n-1)*a(n-2) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 9^k * 7^(n-2*k) * binomial(n,2*k) * Catalan(k).
a(n) = Sum_{k=0..n} 3^k * binomial(n,k) * Catalan(k+1).

A386387 a(n) = Sum_{k=0..n} 4^k * binomial(n,k) * Catalan(k).

Original entry on oeis.org

1, 5, 41, 429, 5073, 64469, 859385, 11853949, 167763361, 2422342053, 35543185353, 528450589005, 7943934373233, 120537517728117, 1843702988611737, 28397640862311453, 440070304667718465, 6856488470912854853, 107340528355762710377, 1687682549936270584045
Offset: 0

Views

Author

Seiichi Manyama, Aug 20 2025

Keywords

Crossrefs

Column k=4 of A340968.

Programs

  • Magma
    [&+[4^k*Binomial(n,k) * Catalan(k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 27 2025
  • Mathematica
    Table[Sum[4^k*Binomial[n,k]*CatalanNumber[k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 27 2025 *)
    A386387[n_] := Hypergeometric2F1[1/2, -n, 2, -16]; Table[A386387[n], {n, 0, 19}]  (* Peter Luschny, Aug 27 2025 *)
  • PARI
    a(n) = sum(k=0, n, 4^k*binomial(n, k)*(2*k)!/(k!*(k+1)!));
    

Formula

G.f.: 2/(1 - x + sqrt((1-x) * (1-17*x))).
G.f. A(x) satisfies A(x) = 1/(1 - x) + 4*x*A(x)^2.
a(n) = 1 + 4 * Sum_{k=0..n-1} a(k) * a(n-1-k).
(n+1)*a(n) = (18*n-8)*a(n-1) - 17*(n-1)*a(n-2) for n > 1.
a(n) ~ 17^(n + 3/2) / (64*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 20 2025
a(n) = hypergeom([1/2, -n], [2], -16). - Peter Luschny, Aug 27 2025

A386408 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * Catalan(j+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 10, 1, 1, 7, 29, 36, 1, 1, 9, 58, 185, 137, 1, 1, 11, 97, 532, 1257, 543, 1, 1, 13, 146, 1161, 5209, 8925, 2219, 1, 1, 15, 205, 2156, 14849, 53347, 65445, 9285, 1, 1, 17, 274, 3601, 34041, 198729, 564499, 491825, 39587, 1
Offset: 0

Views

Author

Seiichi Manyama, Aug 20 2025

Keywords

Examples

			Square array begins:
  1,    1,     1,      1,       1,       1,        1, ...
  1,    3,     5,      7,       9,      11,       13, ...
  1,   10,    29,     58,      97,     146,      205, ...
  1,   36,   185,    532,    1161,    2156,     3601, ...
  1,  137,  1257,   5209,   14849,   34041,    67657, ...
  1,  543,  8925,  53347,  198729,  562551,  1330693, ...
  1, 2219, 65445, 564499, 2748641, 9608811, 27053749, ...
		

Crossrefs

Columns k=0..4 give A000012, A002212(n+1), A127846(n+1), A386362, A386389.
Main diagonal gives A386432.

Programs

  • PARI
    a(n, k) = sum(j=0, n, k^j*binomial(n, j)*(2*(j+1))!/((j+1)!*(j+2)!));

Formula

G.f. of column k: (1/x) * Series_Reversion( x/(1+(2*k+1)*x+(k*x)^2) ).
G.f. of column k: 2/(1 - (2*k+1)*x + sqrt((1-x) * (1-(4*k+1)*x))).
A(n,k) = (A340968(n+1,k) - A340968(n,k))/k for k > 0.
(n+2)*A(n,k) = (2*k+1)*(2*n+1)*A(n-1,k) - (4*k+1)*(n-1)*A(n-2,k) for n > 1.
A(n,k) = Sum_{j=0..floor(n/2)} k^(2*j) * (2*k+1)^(n-2*j) * binomial(n,2*j) * Catalan(j).
Showing 1-3 of 3 results.