cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A385716 Expansion of 1/((1-x) * (1-13*x))^(3/2).

Original entry on oeis.org

1, 21, 348, 5320, 78135, 1120287, 15805972, 220445316, 3047961735, 41857891075, 571725145992, 7774356136092, 105324231178621, 1422411298153125, 19157947746089520, 257427540725705056, 3451990965984505251, 46205867184493459023, 617482101788090727220, 8239952016851603641320
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{x}, CoefficientList[Series[1/((1-x)*(1-13*x))^(3/2), {x, 0, 25}], x]] (* Paolo Xausa, Aug 25 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/((1-x)*(1-13*x))^(3/2))

Formula

n*a(n) = (14*n+7)*a(n-1) - 13*(n+1)*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 13^k * (2*k+1) * (2*(n-k)+1) * binomial(2*k,k) * binomial(2*(n-k),n-k).
a(n) = Sum_{k=0..n} 3^k * (2*k+1) * binomial(2*k,k) * binomial(n+2,n-k).
a(n) = Sum_{k=0..n} (-3)^k * 13^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n+2,n-k).
a(n) = binomial(n+2,2) * A386362(n).
a(n) = ((n+2)/2) * Sum_{k=0..floor(n/2)} 9^k * 7^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = Sum_{k=0..n} (7/2)^k * (-13/14)^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(k,n-k).
a(n) ~ sqrt(3*n) * 13^(n + 3/2) / (36*sqrt(Pi)). - Vaclav Kotesovec, Aug 21 2025

A386389 Expansion of (1/x) * Series_Reversion( x/(1+9*x+16*x^2) ).

Original entry on oeis.org

1, 9, 97, 1161, 14849, 198729, 2748641, 38977353, 563644673, 8280210825, 123226850913, 1853870946057, 28148395838721, 430791367720905, 6638484468424929, 102918165951351753, 1604104541561284097, 25121009971212463881, 395085505395126968417, 6237523016309454855561
Offset: 0

Views

Author

Seiichi Manyama, Aug 20 2025

Keywords

Crossrefs

Column k=4 of A386408.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+9*x+16*x^2))/x)

Formula

G.f.: 2/(1 - 9*x + sqrt((1-x) * (1-17*x))).
a(n) = (A386387(n+1) - A386387(n))/4.
(n+2)*a(n) = 9*(2*n+1)*a(n-1) - 17*(n-1)*a(n-2) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 16^k * 9^(n-2*k) * binomial(n,2*k) * Catalan(k).
a(n) = Sum_{k=0..n} 4^k * binomial(n,k) * Catalan(k+1).

A386408 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * Catalan(j+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 10, 1, 1, 7, 29, 36, 1, 1, 9, 58, 185, 137, 1, 1, 11, 97, 532, 1257, 543, 1, 1, 13, 146, 1161, 5209, 8925, 2219, 1, 1, 15, 205, 2156, 14849, 53347, 65445, 9285, 1, 1, 17, 274, 3601, 34041, 198729, 564499, 491825, 39587, 1
Offset: 0

Views

Author

Seiichi Manyama, Aug 20 2025

Keywords

Examples

			Square array begins:
  1,    1,     1,      1,       1,       1,        1, ...
  1,    3,     5,      7,       9,      11,       13, ...
  1,   10,    29,     58,      97,     146,      205, ...
  1,   36,   185,    532,    1161,    2156,     3601, ...
  1,  137,  1257,   5209,   14849,   34041,    67657, ...
  1,  543,  8925,  53347,  198729,  562551,  1330693, ...
  1, 2219, 65445, 564499, 2748641, 9608811, 27053749, ...
		

Crossrefs

Columns k=0..4 give A000012, A002212(n+1), A127846(n+1), A386362, A386389.
Main diagonal gives A386432.

Programs

  • PARI
    a(n, k) = sum(j=0, n, k^j*binomial(n, j)*(2*(j+1))!/((j+1)!*(j+2)!));

Formula

G.f. of column k: (1/x) * Series_Reversion( x/(1+(2*k+1)*x+(k*x)^2) ).
G.f. of column k: 2/(1 - (2*k+1)*x + sqrt((1-x) * (1-(4*k+1)*x))).
A(n,k) = (A340968(n+1,k) - A340968(n,k))/k for k > 0.
(n+2)*A(n,k) = (2*k+1)*(2*n+1)*A(n-1,k) - (4*k+1)*(n-1)*A(n-2,k) for n > 1.
A(n,k) = Sum_{j=0..floor(n/2)} k^(2*j) * (2*k+1)^(n-2*j) * binomial(n,2*j) * Catalan(j).
Showing 1-3 of 3 results.