A337167
a(n) = 1 + 3 * Sum_{k=0..n-1} a(k) * a(n-k-1).
Original entry on oeis.org
1, 4, 25, 199, 1795, 17422, 177463, 1870960, 20241403, 223438852, 2506596547, 28494103183, 327507800725, 3799735202218, 44440058006593, 523388751658831, 6201937444137619, 73888034816382820, 884517283667145259, 10634234680321209373, 128347834921058404249
Offset: 0
-
a[n_] := a[n] = 1 + 3 Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 20}]
Table[Sum[Binomial[n, k] 3^k CatalanNumber[k], {k, 0, n}], {n, 0, 20}]
Table[Hypergeometric2F1[1/2, -n, 2, -12], {n, 0, 20}]
-
{a(n) = sum(k=0, n, 3^k*binomial(n, k)*(2*k)!/(k!*(k+1)!))} \\ Seiichi Manyama, Jan 31 2021
-
my(N=20, x='x+O('x^N)); Vec(2/(1-x+sqrt((1-x)*(1-13*x)))) \\ Seiichi Manyama, Feb 01 2021
A340968
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j*binomial(n,j)*Catalan(j).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 15, 1, 1, 5, 25, 71, 51, 1, 1, 6, 41, 199, 441, 188, 1, 1, 7, 61, 429, 1795, 2955, 731, 1, 1, 8, 85, 791, 5073, 17422, 20805, 2950, 1, 1, 9, 113, 1315, 11571, 64469, 177463, 151695, 12235, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 5, 13, 25, 41, 61, ...
1, 15, 71, 199, 429, 791, ...
1, 51, 441, 1795, 5073, 11571, ...
1, 188, 2955, 17422, 64469, 181776, ...
-
T_row := n -> k -> hypergeom([1/2, -n], [2], -4*k): for n from 0 to 6 do seq(simplify(T_row(n)(k)), k = 0..6) od; # Peter Luschny, Aug 27 2025
-
T[n_, k_] := Sum[If[j == k == 0, 1, k^j] * Binomial[n, j] * CatalanNumber[j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 01 2021 *)
A340968[n_, k_] := Hypergeometric2F1[1/2, -n, 2, -4*k]; Table[A340968[n, k], {n, 0, 6}, {k, 0, 7}] (* row-wise *) (* Peter Luschny, Aug 27 2025 *)
-
T(n, k) = sum(j=0, n, k^j*binomial(n, j)*(2*j)!/(j!*(j+1)!));
-
T(n, k) = 1+k*sum(j=0, n-1, T(j, k)*T(n-1-j, k));
A340971
a(n) = Sum_{k=0..n} n^k * binomial(n,k) * binomial(2*k,k).
Original entry on oeis.org
1, 3, 33, 721, 23649, 1032801, 56317969, 3682424775, 280767441537, 24456613613401, 2395993939827201, 260764460901476643, 31213273328323059169, 4075382667781540713807, 576394007453263029232497
Offset: 0
-
a[0] = 1; a[n_] := Sum[n^k * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]; Array[a, 15, 0] (* Amiram Eldar, Feb 01 2021 *)
-
a(n) = sum(k=0, n, n^k*binomial(n, k)*binomial(2*k, k));
-
a(n) = polcoef(1/sqrt((1-x)*(1-(4*n+1)*x)+x*O(x^n)), n);
-
a(n) = polcoef((1+(2*n+1)*x+(n*x)^2)^n, n);
A339001
a(n) = (-1)^n * Sum_{k=0..n} (-n)^k * binomial(n,k) * Catalan(k).
Original entry on oeis.org
1, 0, 5, 89, 2481, 93274, 4450645, 258297570, 17689681345, 1397903887808, 125286890408901, 12562851683433765, 1393925069404093105, 169595051215441936902, 22454465186157134883285
Offset: 0
-
a[0] = 1; a[n_] := (-1)^n * Sum[(-n)^k * Binomial[n, k] * CatalanNumber[k], {k, 0, n}]; Array[a, 15, 0] (* Amiram Eldar, Feb 01 2021 *)
-
{a(n) = (-1)^n*sum(k=0, n, (-n)^k*binomial(n, k)*(2*k)!/(k!*(k+1)!))}
A386432
a(n) = Sum_{k=0..n} n^k * binomial(n,k) * Catalan(k+1).
Original entry on oeis.org
1, 3, 29, 532, 14849, 562551, 27053749, 1581258225, 108965790593, 8657148898585, 779508506302701, 78480330282178738, 8738801236865140417, 1066555304017996550265, 141604665239501105707269, 20321162053065050407161076, 3134730687100285268294654465, 517309567362171441488395248225
Offset: 0
-
[&+[n^k*Binomial(n, k) * Catalan (k+1): k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Aug 22 2025
-
Table[Sum[(n^k/. 0^0->1)*Binomial[n,k]*CatalanNumber[k+1],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 22 2025 *)
-
a(n) = sum(k=0, n, n^k*binomial(n, k)*(2*(k+1))!/((k+1)!*(k+2)!));
Showing 1-5 of 5 results.
Comments