cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A340970 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * binomial(2*j,j).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 11, 1, 1, 7, 33, 45, 1, 1, 9, 67, 245, 195, 1, 1, 11, 113, 721, 1921, 873, 1, 1, 13, 171, 1593, 8179, 15525, 3989, 1, 1, 15, 241, 2981, 23649, 95557, 127905, 18483, 1, 1, 17, 323, 5005, 54691, 361449, 1137709, 1067925, 86515, 1
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2021

Keywords

Examples

			Square array begins:
  1,   1,     1,     1,      1,       1, ...
  1,   3,     5,     7,      9,      11, ...
  1,  11,    33,    67,    113,     171, ...
  1,  45,   245,   721,   1593,    2981, ...
  1, 195,  1921,  8179,  23649,   54691, ...
  1, 873, 15525, 95557, 361449, 1032801, ...
		

Crossrefs

Columns k=0..3 give A000012, A026375, A084771, A340973.
Rows n=0..2 give A000012, A005408, A080859.
Main diagonal gives A340971.
Cf. A340968.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[j == k == 0, 1, k^j] * Binomial[n, j] * Binomial[2*j, j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 01 2021 *)
  • PARI
    T(n, k) = sum(j=0, n, k^j*binomial(n, j)*binomial(2*j, j));
    
  • PARI
    T(n, k) = polcoef((1+(2*k+1)*x+(k*x)^2)^n, n);

Formula

G.f. of column k: 1/sqrt((1 - x) * (1 - (4*k+1)*x)).
T(n,k) = [x^n] (1+(2*k+1)*x+(k*x)^2)^n.
n * T(n,k) = (2*k+1) * (2*n-1) * T(n-1,k) - (4*k+1) * (n-1) * T(n-2,k) for n > 1.
E.g.f. of column k: exp((2*k+1)*x) * BesselI(0,2*k*x). - Ilya Gutkovskiy, Feb 01 2021
From Seiichi Manyama, Aug 19 2025: (Start)
T(n,k) = (1/4)^n * Sum_{j=0..n} (4*k+1)^j * binomial(2*j,j) * binomial(2*(n-j),n-j).
T(n,k) = Sum_{j=0..n} (-k)^j * (4*k+1)^(n-j) * binomial(n,j) * binomial(2*j,j). (End)

A340972 a(n) = Sum_{k=0..n} (-n)^k * binomial(n,k) * binomial(2*k,k).

Original entry on oeis.org

1, -1, 17, -395, 13345, -592299, 32630401, -2148740061, 164682639745, -14401797806195, 1415344434226801, -154426458074411313, 18523291145011712929, -2422743610992855309925, 343167234011405980982625
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(-n)^k * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]; Array[a, 15, 0] (* Amiram Eldar, Feb 01 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-n)^k*binomial(n, k)*binomial(2*k, k));
    
  • PARI
    a(n) = polcoef(1/sqrt((1-x)*(1+(4*n-1)*x)+x*O(x^n)), n);
    
  • PARI
    a(n) = polcoef((1-(2*n-1)*x+(n*x)^2)^n, n);

Formula

a(n) = [x^n] 1/sqrt((1-x)*(1+(4*n-1)*x)).
a(n) = [x^n] (1-(2*n-1)*x+(n*x)^2)^n.
a(n) = n! * [x^n] BesselI(0,2*n*x) / exp((2*n-1)*x). - Ilya Gutkovskiy, Feb 01 2021
a(n) ~ (-1)^n * exp(-1/4) * 4^n * n^(n - 1/2) / sqrt(Pi). - Vaclav Kotesovec, Nov 13 2021
From Seiichi Manyama, Aug 19 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} (-4*n+1)^k * binomial(2*k,k) * binomial(2*(n-k),n-k).
a(n) = Sum_{k=0..n} n^k * (-4*n+1)^(n-k) * binomial(n,k) * binomial(2*k,k). (End)

A383132 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n*k,k) * n^k.

Original entry on oeis.org

1, 2, 33, 2701, 524993, 181752001, 97735073905, 75179269556672, 78240951854025217, 105806762566689176353, 180297512864534759056001, 377878889913778527874694227, 955217573424445946022789385537, 2865620569274978738097814056365899, 10064763360358683666070320479027168465
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; Table[Sum[Binomial[n, k] Binomial[n k, k] n^k, {k, 0, n}], {n, 0, 14}]

Formula

a(n) = [x^n] ((1 + n*x)^n + x)^n.
a(n) ~ exp(n - 1/2) * n^(2*n - 1/2) / sqrt(2*Pi). - Vaclav Kotesovec, Apr 19 2025
Showing 1-3 of 3 results.