cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A338979 a(n) = Sum_{k=0..n} n^k * binomial(n,k) * Catalan(k).

Original entry on oeis.org

1, 2, 13, 199, 5073, 181776, 8413021, 478070020, 32238960193, 2517734880838, 223558608409101, 22248413487603887, 2453271411779452369, 296925818848604834448, 39138393489232585787037, 5581250331202285217569351, 856182695406472437496803585, 140595282922234695782098680030
Offset: 0

Views

Author

Seiichi Manyama, Jan 31 2021

Keywords

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([1/2, -n], [2], -4*n):
    seq(simplify(a(n)), n = 0..17);  # Peter Luschny, Aug 27 2025
  • Mathematica
    A338979[n_] :=  Sum[n^k*Binomial[n, k]*(2*k)!/(k!*(k + 1)!), {k, 0, n}];
    Join[{1}, Table[A338979[n], {n, 1, 17}]] (* Robert P. P. McKone, Jan 31 2021 *)
    A338979[n_] := Hypergeometric2F1[1/2, -n, 2, -4*n]; Table[A338979[n], {n, 0, 17}]  (* Peter Luschny, Aug 27 2025 *)
  • PARI
    {a(n) = sum(k=0, n, n^k*binomial(n, k)*(2*k)!/(k!*(k+1)!))}

Formula

a(n) = n! * [x^n] exp((2*n+1)*x) * (BesselI(0,2*n*x) - BesselI(1,2*n*x)). - Ilya Gutkovskiy, Feb 02 2021
a(n) ~ exp(1/4) * 4^n * n^(n - 3/2) / sqrt(Pi). - Vaclav Kotesovec, Feb 14 2021
a(n) = hypergeom([1/2, -n], [2], -4*n). - Peter Luschny, Aug 27 2025

A340972 a(n) = Sum_{k=0..n} (-n)^k * binomial(n,k) * binomial(2*k,k).

Original entry on oeis.org

1, -1, 17, -395, 13345, -592299, 32630401, -2148740061, 164682639745, -14401797806195, 1415344434226801, -154426458074411313, 18523291145011712929, -2422743610992855309925, 343167234011405980982625
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(-n)^k * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]; Array[a, 15, 0] (* Amiram Eldar, Feb 01 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-n)^k*binomial(n, k)*binomial(2*k, k));
    
  • PARI
    a(n) = polcoef(1/sqrt((1-x)*(1+(4*n-1)*x)+x*O(x^n)), n);
    
  • PARI
    a(n) = polcoef((1-(2*n-1)*x+(n*x)^2)^n, n);

Formula

a(n) = [x^n] 1/sqrt((1-x)*(1+(4*n-1)*x)).
a(n) = [x^n] (1-(2*n-1)*x+(n*x)^2)^n.
a(n) = n! * [x^n] BesselI(0,2*n*x) / exp((2*n-1)*x). - Ilya Gutkovskiy, Feb 01 2021
a(n) ~ (-1)^n * exp(-1/4) * 4^n * n^(n - 1/2) / sqrt(Pi). - Vaclav Kotesovec, Nov 13 2021
From Seiichi Manyama, Aug 19 2025: (Start)
a(n) = (1/4)^n * Sum_{k=0..n} (-4*n+1)^k * binomial(2*k,k) * binomial(2*(n-k),n-k).
a(n) = Sum_{k=0..n} n^k * (-4*n+1)^(n-k) * binomial(n,k) * binomial(2*k,k). (End)
Showing 1-2 of 2 results.