A336110 Irregular triangle of Catalan-based numbers, read by rows.
1, 1, 2, -2, 5, -14, 5, 14, -74, 74, -14, 42, -352, 668, -352, 42, 132, -1588, 4808, -4808, 1588, -132, 429, -6946, 30371, -48540, 30371, -6946, 429, 1430, -29786, 176270, -407810, 407810, -176270, 29786, -1430
Offset: 1
Examples
1; 1; 2, -2; 5, -14, 5; 14, -74, 74, -14; 42, -352, 668, -352, 42; 132, -1588, 4808, -4808, 1588, -132; 429, -6946, 30371, -48540, 30371, -6946, 429; 1430, -29786, 176270, -407810, 407810, -176270, 29786, -1430; ...
Links
- Sergii Voloshyn, Table of n, a(n) for n = 1..120
- O. Borisenko, V. Chelnokov, and Sergii Voloshyn, The large N limit of SU(N) integrals in lattice, arXiv:2008.00773 [hep-lat], 2020. See formula (48).
- F. Green and S. Samuel, Calculating the large-N phase transition in gauge and matrix models, Nuclear Physics B 194, Issue 1, 11 January 1982, Pages 107-156, See Appendix A.
Programs
-
Mathematica
T[L_, n_] := CatalanNumber[L] Sum[u[L, a]/u[0, a] M[n - 1 - 2*a, L], {a, 0, (n - 1)/2}]-4^L Sum[v[L, a]/v[0, a] M[n - 2 - 2*a, L], {a,0,(n-2)/2}]; M[n_, l_] := Sum[k!/n! BellY[n,k,Table[(-1)^(j-1) j!Binomial[3l+j,j], {j,n}]], {k, 0, n}]; u[k_, n_] := Product[Binomial[2 k + 2 l + 1, 3], {l, 1, n}]; v[k_, n_] := Product[ Binomial[2 k + 2 l + 2, 3], {l, 1, n}]; (* alternate program using coefficients in numerator *) P[s_] := x CatalanNumber[s] HypergeometricPFQ[{s + 1/2, s + 1, s + 3/2}, {1/2, 3/2}, x^2] - x^2*4^s HypergeometricPFQ[{s + 1, s + 3/2, s + 2}, {3/2, 2}, x^2]; Table[CoefficientList[P[s] // Together // Numerator, x] // Rest, {s, 0, 10}] // Flatten (* amended by Jean-François Alcover, Sep 25 2020 *) (* another program using coefficients in numerator *) Needs["Combinatorica`"]; OA[p_,x_]:= (2^p(-(1/(x+1)))^(2p+1))/((2p+1)!(p+1)!) Sum[(-x/(1+x))^(p-r+1)Product[Pochhammer[1+Plus@@Table[3*k[[i]]-1,{i,1,j-1}],3*k[[j]]],{j,1,r}],{r, 1, p},{k,Compositions[p-r,r]+1}]; Table[CoefficientList[OA[s, x] // Together // Numerator, x] // Rest, {s, 0, 10}] // Flatten (* Sergii Voloshyn, Sep 03 2021 *)
Formula
Coefficients of x^n in the numerator of P(s) = (x * C[s]* 3F2[ s+ 1/2, s+1, s+3/2; 1/2,3/2; x^2] - x^2 * 4^s * 3F2[ s+1,s+3/2, s+2; 3/2, 2; x^2]), where C(s) are Catalan numbers.
or in a more explicit way (only for k >= 1)
T(s, n) = C(s) * U(s, n) - 4^s * V(s, n), where
U(s, n) = Sum_{a=0..(n-1)/2} (u(s, a)/u(0,a)) * M(s, n-1- 2a),
V(s, n) = Sum_{a=0..(n-2)/2} (v(s, a)/v(0,a)) * M(s, n-2- 2a), and
u(s, n) = Product_{L=1..n} binomial(2s+2L+1, 3),
v(s, n) = Product_{L=1..n} binomial(2s+2L+2, 3), and
M(m, n) = Sum_{L=1..n} L!/n! B_{n,l} ( x_1, ..., x_{n-L+1}), and
x_i = (-1)^{1+i} * (3s+i)_i = (-1)^{1+i} * i! * binomial(3s + i, i), where
B_{n,l} (x_1, ..., x_{n-L+1}) is the n-th partial or incomplete exponential Bell polynomial with monomials sorted into graded lexicographic order.
Sum of numbers in the particular row:
Sum_{n=1..2*k+1} T(2*k+1, n) = 2*(4*k+1)!/((k+1)!*(3*k+2)!) *2^(2*k) (odd s);
Sum_{n=1..2*k} T(2*k, n) = 0 (even s).
From Sergii Voloshyn, Oct 22 2020: (Start)
Formulae for particular columns:
T(s, 1) = C(s);
T(s, 2) = C(s)*(3*s+1) - 4^s;
T(s, 3) = C(s)*(binomial(2*s+3,3) + (3*s+1)^2 - binomial(3*s +2,2)) - 4^s*(3*s+1);
T(s, 4) = C(s)*((2*s+1)binomial(2*s+3,3) +(3*s+1)^3 - 2(3*s+1)* binomial(3*s+2,2)+ binomial(3*s+3, 3)) - 4^s*(binomial(3*s+4, 3)/4 + (3*s+1)^2 - binomial(3*s+2,2));
...
T(s, s) = (-1)^(s+1)*C(s). (End)
From Sergii Voloshyn, Mar 17 2021: (Start)
Recursion ( P[0] = x/(1+x) ):
x*(d^3/dx^3)*P[s] = (1/4)*(2*k+2)*(2*k+3)*(2*k+4)*P[s+1]
for P[s_] := x CatalanNumber[s] HypergeometricPFQ[{s + 1/2, s + 1, s + 3/2}, {1/2, 3/2}, x^2] - x^2*4^s HypergeometricPFQ[{s + 1, s + 3/2, s + 2}, {3/2, 2}, x^2].
(End)
Recursion for array ( T(1,1) = 1 ): T(k, p) = (1/(k*(k+1)*(2k+1)))*[p*(p+1)*(p+2)*T(k-1,p+2) - 3*p*(p+1)*(3*k-p-1)*T(k-1,p+1) + 3*p*(3*k-p)*(3*k-p-1)*T(k-1,p) - (3*k-p+1)*(3*k-p)*(3*k-p-1)*T(k-1,p-1)]; p =[1,...,k]. - Sergii Voloshyn, Apr 14 2021
From Sergii Voloshyn, Apr 17 2021: (Start)
G.f.: Sum_{m>=1} x^m Om(k, m) = (1/(1+x)^(3*k+1))*Sum_{n=1..k} x^k * T(k,n);
Om(k, m) = (12^k/((1+k)!*(2k+1)!)) * Product_{L=1..k} binomial(m+2L, 3).
(End)
From Sergii Voloshyn, Apr 25 2021: (Start)
Differential equation for P[k_]:
x*(x^2-1)*(d^3/dx^3)P[s] + (2*k+2)*3*x^2*(d^2/dx^2)P[s] +(2*k+2)*(2*k+1)*3*x (d/dx)P[s] + (2*k+2)(2*k+1)*2*k*P[s] = 0.
Discrete set equation for T(k,n) (n=-1..k-2) at fixed k:
(k-n-1)*(k-n)*(k-n+1)*T(k,n) - (k-n-1)*(k-n)*(8*k+n+5)*T(k,n+1) - (n+1)*(n+2)*(9-n+3)*T(k,n+2) + (n+1)*(n+2)*(n+3)*T(k,n+3) = 0
and
Sum_{m=1..k} (k*(5+7*k) + 12*n*(n-1-k))*T(k,n) = 0. (End)
P[k_]:= (2^k)/((2*k+1)!*(k+1)!)*(-1/(1+x))^{2k+1}[Sum_{r(1)+...+ r(L)=k} (-x/(1+x))^{k-L+1}* 1^{(3*r(1))}*(1+3*r(1)-1)^{(3*r(2))}*... *(1+Sum_{i=1..L-1} 3 r(i) -L+1)^{(3*r(L))}] where Sum_ r_i = k runs over all integer compositions of k, L is a number of parts of this composition and 1^{(3 r(1))} is a rising factorial. - Sergii Voloshyn, Sep 03 2021
Sum_{k} abs(T(n,k)) = A000309(n-1). - Sergii Voloshyn, Nov 20 2024
Comments