cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A120730 Another version of Catalan triangle A009766.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 0, 5, 4, 1, 0, 0, 0, 5, 9, 5, 1, 0, 0, 0, 0, 14, 14, 6, 1, 0, 0, 0, 0, 14, 28, 20, 7, 1, 0, 0, 0, 0, 0, 42, 48, 27, 8, 1, 0, 0, 0, 0, 0, 42, 90, 75, 35, 9, 1, 0, 0, 0, 0, 0, 0, 132, 165, 110, 44, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 17 2006, corrected Sep 15 2006

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, ...] DELTA [1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, ...] where DELTA is the operator defined in A084938.
Aerated version gives A165408. - Philippe Deléham, Sep 22 2009
T(n,k) is the number of length n left factors of Dyck paths having k up steps. Example: T(5,4)=4 because we have UDUUU, UUDUU, UUUDU, and UUUUD, where U=(1,1) and D=(1,-1). - Emeric Deutsch, Jun 19 2011
With zeros omitted: 1,1,1,1,2,1,2,3,1,5,4,1,... = A008313. - Philippe Deléham, Nov 02 2011

Examples

			As a triangle, this begins:
  1;
  0,  1;
  0,  1,  1;
  0,  0,  2,  1;
  0,  0,  2,  3,  1;
  0,  0,  0,  5,  4,  1;
  0,  0,  0,  5,  9,  5,  1;
  0,  0,  0,  0, 14, 14,  6,  1;
  ...
		

Crossrefs

Programs

  • Magma
    A120730:= func< n,k | n gt 2*k select 0 else Binomial(n, k)*(2*k-n+1)/(k+1) >;
    [A120730(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Nov 07 2022
    
  • Maple
    G := 4*z/((2*z-1+sqrt(1-4*z^2*t))*(1+sqrt(1-4*z^2*t))): Gser := simplify(series(G, z = 0, 13)): for n from 0 to 12 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 12 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form  # Emeric Deutsch, Jun 19 2011
    # second Maple program:
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    T:= (n, k)-> b(n, 2*k-n):
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Oct 13 2022
  • Mathematica
    b[x_, y_]:= b[x, y]= If[y<0 || y>x, 0, If[x==0, 1, Sum[b[x-1, y+j], {j, {-1, 1}}] ]];
    T[n_, k_] := b[n, 2 k - n];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Oct 21 2022, after Alois P. Heinz *)
    T[n_, k_]:= If[n>2*k, 0, Binomial[n, k]*(2*k-n+1)/(k+1)];
    Table[T[n, k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 07 2022 *)
  • SageMath
    def A120730(n,k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    flatten([[A120730(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Nov 07 2022

Formula

G.f.: G(t,z) = 4*z/((2*z-1+sqrt(1-4*t*z^2))*(1+sqrt(1-4*t*z^2))). - Emeric Deutsch, Jun 19 2011
Sum_{k=0..n} x^k*T(n,n-k) = A001405(n), A126087(n), A128386(n), A121724(n), A128387(n), A132373(n), A132374(n), A132375(n), A121725(n) for x=1,2,3,4,5,6,7,8,9 respectively. [corrected by Philippe Deléham, Oct 16 2008]
T(2*n,n) = A000108(n); A000108: Catalan numbers.
From Philippe Deléham, Oct 18 2008: (Start)
Sum_{k=0..n} T(n,k)^2 = A000108(n) and Sum_{n>=k} T(n,k) = A000108(k+1).
Sum_{k=0..n} T(n,k)^3 = A003161(n).
Sum_{k=0..n} T(n,k)^4 = A129123(n). (End)
Sum_{k=0..n}, T(n,k)*x^k = A000007(n), A001405(n), A151281(n), A151162(n), A151254(n), A156195(n), A156361(n), A156362(n), A156566(n), A156577(n) for x=0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Feb 10 2009
From G. C. Greubel, Nov 07 2022: (Start)
T(n, k) = 0 if n > 2*k, otherwise binomial(n, k)*(2*k-n+1)/(k+1).
Sum_{k=0..n} (-1)^k*T(n,k) = A105523(n).
Sum_{k=0..n} (-1)^k*T(n,k)^2 = -A132889(n), n >= 1.
Sum_{k=0..floor(n/2)} T(n-k, k) = A357654(n).
T(n, n-1) = A001477(n).
T(n, n-2) = [n=2] + A000096(n-3), n >= 2.
T(n, n-3) = 2*[n<5] + A005586(n-5), n >= 3.
T(n, n-4) = 5*[n<7] - 2*[n=4] + A005587(n-7), n >= 4.
T(2*n+1, n+1) = A000108(n+1), n >= 0.
T(2*n-1, n+1) = A099376(n-1), n >= 1. (End)

A151254 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

Original entry on oeis.org

1, 4, 20, 96, 480, 2368, 11840, 58880, 294400, 1468416, 7342080, 36667392, 183336960, 916144128, 4580720640, 22896574464, 114482872320, 572320645120, 2861603225600, 14306741583872, 71533707919360, 357650927714304, 1788254638571520, 8941026626502656, 44705133132513280, 223522175800311808
Offset: 0

Views

Author

Manuel Kauers, Nov 18 2008

Keywords

Comments

Hankel transform is 4^binomial(n+1,2). - Philippe Deléham, Feb 01 2009

Crossrefs

Programs

  • Magma
    [n le 3 select Factorial(n+2)/6 else (5*n*Self(n-1) + 16*(n-3)*Self(n-2) - 80*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
    
  • Mathematica
    aux[i_, j_, k_, n_]:= Which[Min[i, j, k, n]<0 || Max[i, j, k]>n, 0, n==0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1+i, -1+j, -1+k, -1+n] + aux[-1+i, -1+j, k, -1+n] + aux[-1+i, j, -1+k, -1+n] + aux[-1+i, j, k, -1 + n] + aux[1+i, j, k, -1+n]]; Table[Sum[aux[i,j,k,n], {i,0,n}, {j,0,n}, {k,0,n}], {n, 0, 30}]
    a[n_]:= a[n]= If[n<3, (n+3)!/3!, (5*(n+1)*a[n-1] +16*(n-2)*a[n-2] -80*(n-2)*a[n- 3])/(n+1)]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Nov 09 2022 *)
  • SageMath
    def a(n): # a = A151254
        if (n==0): return 1
        elif (n%2==1): return 5*a(n-1) - 4^((n-1)/2)*catalan_number((n-1)/2)
        else: return 5*a(n-1)
    [a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k)*4^k. - Philippe Deléham, Feb 01 2009
From Philippe Deléham, Feb 02 2009: (Start)
a(2n+2) = 5*a(2n+1), a(2n+1) = 5*a(2n) - 4^n*A000108(n) = 5*a(2n) - A151403(n).
G.f.: (sqrt(1-16*x^2) + 8*x - 1)/(8*x*(1-5*x)). (End)
a(n) = (5*(n+1)*a(n-1) + 16*(n-2)*a(n-2) - 80*(n-2)*a(n-3))/(n+1). - G. C. Greubel, Nov 09 2022

A156195 a(2n+2) = 6*a(2n+1), a(2n+1) = 6*a(2n) - 5^n*A000108(n), a(0)=1.

Original entry on oeis.org

1, 5, 30, 175, 1050, 6250, 37500, 224375, 1346250, 8068750, 48412500, 290343750, 1742062500, 10450312500, 62701875000, 376177734375, 2257066406250, 13541839843750, 81251039062500, 487496738281250, 2924980429687500, 17549718554687500, 105298311328125000
Offset: 0

Views

Author

Philippe Deléham, Feb 05 2009

Keywords

Comments

Hankel transform is 5^C(n+1,2). - Philippe Deléham, Feb 05 2009

Crossrefs

Programs

  • Magma
    [n le 3 select Factorial(n+3)/24 else (6*n*Self(n-1) + 20*(n-3)*Self(n-2) - 120*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
    
  • Maple
    A156195 := proc(n)
        option remember;
        local nh;
        if n= 0 then
            1;
        elif  type(n,'even') then
            6*procname(n-1);
        else
            nh := floor(n/2) ;
            6*procname(n-1)-5^nh*A000108(nh) ;
        end if;
    end proc: # R. J. Mathar, Jul 21 2016
  • Mathematica
    CoefficientList[Series[(Sqrt[1-20x^2]+10x-1)/(10x(1-6x)),{x,0,30}],x] (* Harvey P. Dale, Oct 21 2016 *)
  • SageMath
    def a(n): # a = A156195
        if (n==0): return 1
        elif (n%2==1): return 6*a(n-1) - 5^((n-1)/2)*catalan_number((n-1)/2)
        else: return 6*a(n-1)
    [a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k)*5^k.
G.f.: (sqrt(1-20*x^2) +10*x -1)/(10*x*(1-6*x)). - Philippe Deléham, Feb 05 2009
(n+1)*a(n) = 6*(n+1)*a(n-1) + 20*(n-2)*a(n-2) - 120*(n-2)*a(n-3). - R. J. Mathar, Jul 21 2016

Extensions

Corrected and extended by Harvey P. Dale, Oct 21 2016

A156361 a(2*n+2) = 7*a(2*n+1), a(2*n+1) = 7*a(2*n) - 6^n*A000108(n), a(0) = 1.

Original entry on oeis.org

1, 6, 42, 288, 2016, 14040, 98280, 686880, 4808160, 33638976, 235472832, 1647983232, 11535882624, 80745019776, 565215138432, 3956385876480, 27694701135360, 193860506096640, 1357023542676480, 9499115800977408
Offset: 0

Views

Author

Philippe Deléham, Feb 08 2009

Keywords

Comments

Hankel transform is 6^C(n+1, 2).

Crossrefs

Programs

  • Magma
    [n le 3 select Factorial(n+4)/120 else (7*n*Self(n-1) + 24*(n-3)*Self(n-2) - 168*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
    
  • Maple
    A156361 := proc(n)
        option remember;
        local nh;
        if n= 0 then
            1;
        elif  type(n,'even') then
            7*procname(n-1);
        else
            nh := floor(n/2) ;
            7*procname(n-1)-6^nh*A000108(nh) ;
        end if;
    end proc: # R. J. Mathar, Jul 21 2016
  • Mathematica
    a[n_]:= a[n]= If[n==0, 1, 7*a[n-1] -If[EvenQ[n], 0, 6^((n-1)/2)* CatalanNumber[(n-1)/2]]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 04 2022 *)
  • SageMath
    def a(n): # a = A156361
        if (n==0): return 1
        elif (n%2==1): return 7*a(n-1) - 6^((n-1)/2)*catalan_number((n-1)/2)
        else: return 7*a(n-1)
    [a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022

Formula

a(n) = Sum{k=0..n} A120730(n,k) * 6^k.
(n+1)*a(n) = 7*(n+1)*a(n-1) + 24*(n-2)*a(n-2) - 168*(n-2)*a(n-3). - R. J. Mathar, Jul 21 2016

A156362 a(2*n+2) = 8*a(2*n+1), a(2*n+1) = 8*a(2*n) - 7^n*A000108(n), a(0)=1.

Original entry on oeis.org

1, 7, 56, 441, 3528, 28126, 225008, 1798349, 14386792, 115060722, 920485776, 7363180314, 58905442512, 471228010428, 3769824083424, 30158239367445, 241265914939560, 1930119075851050, 15440952606808400, 123527424655229966
Offset: 0

Views

Author

Philippe Deléham, Feb 08 2009

Keywords

Comments

Hankel transform is 7^C(n+1,2).

Crossrefs

Programs

  • Magma
    [n le 3 select Factorial(n+5)/720 else (8*n*Self(n-1) + 28*(n-3)*Self(n-2) - 224*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
    
  • Mathematica
    a[n_]:= a[n]= If[n==0, 1, If[OddQ[n], 8*a[n-1] -7^((n-1)/2)*CatalanNumber[(n-1)/2], 8*a[n-1]]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Nov 09 2022 *)
  • SageMath
    def a(n): # a = A156362
        if (n==0): return 1
        elif (n%2==1): return 8*a(n-1) - 7^((n-1)/2)*catalan_number((n-1)/2)
        else: return 8*a(n-1)
    [a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k) * 7^k.
a(n) = ( 8*(n+1)*a(n-1) + 28*(n-2)*a(n-2) - 224*(n-2)*a(n-3) )/(n+1). - G. C. Greubel, Nov 09 2022

A156566 a(2n+2) = 9*a(2n+1), a(2n+1) = 9*a(2n) - 8^n*A000108(n), a(0)=1.

Original entry on oeis.org

1, 8, 72, 640, 5760, 51712, 465408, 4186112, 37675008, 339017728, 3051159552, 27459059712, 247131537408, 2224149233664, 20017343102976, 180155188248576, 1621396694237184, 14592546256715776, 131332916310441984
Offset: 0

Views

Author

Philippe Deléham, Feb 10 2009

Keywords

Comments

Hankel transform is 8^C(n+1,2).

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 8; a[2] = 72; a[n_] := a[n] = (-288*(n-2)*a[n-3] + 32*(n-2)*a[n-2] + 9*(n+1)*a[n-1])/(n+1); Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Nov 15 2016 *)
    a[n_]:= a[n]= If[n==0, 1, If[OddQ[n], 9*a[n-1] - 8^((n-1)/2)*CatalanNumber[(n- 1)/2], 9*a[n-1]]]; Table[a[n], {n,0,30}] (* G. C. Greubel, May 18 2022 *)
  • SageMath
    def a(n): # a = A156566
        if (n==0): return 1
        elif (n%2==1): return 9*a(n-1) - 8^((n-1)/2)*catalan_number((n-1)/2)
        else: return 9*a(n-1)
    [a(n) for n in (0..30)] # G. C. Greubel, May 18 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k)*8^k.

A156577 a(2*n+2) = 10*a(2*n+1), a(2*n+1) = 10*a(2*n) - 9^n*A000108(n), a(0) = 1.

Original entry on oeis.org

1, 9, 90, 891, 8910, 88938, 889380, 8890155, 88901550, 888923646, 8889236460, 88889884542, 888898845420, 8888918303988, 88889183039880, 888889778505099, 8888897785050990, 88888916293698870, 888889162936988700
Offset: 0

Views

Author

Philippe Deléham, Feb 10 2009

Keywords

Comments

Hankel transform is 9^binomial(n+1,2).

Crossrefs

Programs

  • Mathematica
    a[n_]:= a[n]= If[n==0, 1, If[OddQ[n], 10*a[n-1] -9^((n-1)/2)*CatalanNumber[(n-1)/2], 10*a[n-1] ]];
    Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jan 04 2022 *)
  • Sage
    def a(n): # a = A156577
        if (n==0): return 1
        elif (n%2==1): return 10*a(n-1) - 9^((n-1)/2)*catalan_number((n-1)/2)
        else: return 10*a(n-1)
    [a(n) for n in (0..30)] # G. C. Greubel, Jan 04 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k) * 9^k.

A368164 Number of nondeterministic Dyck bridges of length 2*n.

Original entry on oeis.org

1, 7, 63, 583, 5407, 50007, 460815, 4231815, 38745279, 353832631, 3224323183, 29328492519, 266364307231, 2416023142423, 21890268365007, 198151683934023, 1792260214473087, 16199857938091383, 146342491104098607, 1321339563995562663, 11925412051760977887, 107590261672922633943
Offset: 0

Views

Author

Michael Wallner, Dec 14 2023

Keywords

Comments

In nondeterministic walks (N-walks) the steps are sets and called N-steps. N-walks start at 0 and are concatenations of such N-steps such that all possible extensions are explored in parallel. The nondeterministic Dyck step set is { {-1}, {1}, {-1,1} }. Such an N-walk is called an N-bridge if it contains at least one trajectory that is a classical bridge, i.e., starts and ends at 0 (for more details see the de Panafieu-Wallner article).

Examples

			The a(1)=7 N-bridges of length 2 are
           /              /    /
/\,    ,  /\,    ,  /\,  / ,  /\
     \/        \/   \    \/   \/
                \    \         \
		

Crossrefs

Cf. A151281 (nondeterministic Dyck meanders), A368234 (nondeterministic Dyck excursions), A000244 (nondeterministic Dyck walks).

Formula

G.f.: (1-6*t)/(sqrt(1-8*t)*(1-9*t)).
From Joseph M. Shunia, May 09 2024: (Start)
a(n) = A089022(n) + Sum_{k=0..n-1} binomial(2*n, k)*2^(2*n-k).
a(n) = A000244(2*n) - Sum_{k=n+1..2*n} binomial(2*n, k)*2^(2*n-k+1). (End)

A368234 Number of nondeterministic Dyck excursions of length 2*n.

Original entry on oeis.org

1, 4, 28, 224, 1888, 16320, 143040, 1264128, 11230720, 100124672, 894785536, 8010072064, 71794294784, 644079468544, 5782109208576, 51934915067904, 466666751655936, 4194593964294144, 37711993926844416, 339119962067042304, 3049961818869989376, 27434013235435536384
Offset: 0

Views

Author

Michael Wallner, Dec 18 2023

Keywords

Comments

In nondeterministic walks (N-walks) the steps are sets and called N-steps. N-walks start at 0 and are concatenations of such N-steps such that all possible extensions are explored in parallel. The nondeterministic Dyck step set is { {-1}, {1}, {-1,1} }. Such an N-walk is called an N-excursion if it contains at least one trajectory that is a classical excursion, i.e., never crosses the x-axis, and starts and ends at 0 (for more details see the de Panafieu-Wallner article).

Examples

			The a(1)=4 N-bridges of length 2 are
      /         /
/\,  /\,  /\,  /\
          \    \/
           \    \
		

Crossrefs

Cf. A151281 (Nondeterministic Dyck meanders), A368164 (Nondeterministic Dyck bridges), A000244 (Nondeterministic Dyck walks).

Formula

G.f.: (1-8*x-(1-12*x)*sqrt(1-8*x))/(8*x*(1-9*x)).
Showing 1-9 of 9 results.