A379172
G.f. A(x) satisfies A(x) = (1 + x*A(x)^3)/(1 - x*A(x))^3.
Original entry on oeis.org
1, 4, 33, 358, 4445, 59745, 846023, 12430941, 187753479, 2896929975, 45465112431, 723520554096, 11647721390271, 189352106241567, 3104046096391902, 51254005259550753, 851674902290491936, 14231191062537888864, 238978853442142491358, 4030889937027642017872
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+2*k+1, k)*binomial(4*n+5*k+2, n-k)/(n+2*k+1));
A379171
G.f. A(x) satisfies A(x) = (1 + x)/(1 - x*A(x))^3.
Original entry on oeis.org
1, 4, 21, 139, 1021, 8010, 65708, 556751, 4834686, 42800265, 384832083, 3504693519, 32261240127, 299685628629, 2805773759322, 26448278629697, 250806022116194, 2390973659474304, 22901157688878983, 220279614235505630, 2126890041331033797, 20606993367985131716
Offset: 0
-
a(n) = sum(k=0, n, binomial(n-k+1, k)*binomial(4*n-4*k+2, n-k)/(n-k+1));
A369216
Expansion of (1/x) * Series_Reversion( x * ((1-x)^4-x) ).
Original entry on oeis.org
1, 5, 44, 479, 5827, 75887, 1034980, 14593794, 211031650, 3112385177, 46636714566, 707983562624, 10865572966703, 168306274609798, 2627854427929448, 41314461126179272, 653481096161664690, 10391753978329136808, 166040704868503173384
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serreverse(x*((1-x)^4-x))/x)
-
a(n) = sum(k=0, n, binomial(n+k, k)*binomial(5*n+3*k+3, n-k))/(n+1);
A369694
Expansion of (1/x) * Series_Reversion( x * ((1-x)^3-x^2) ).
Original entry on oeis.org
1, 3, 16, 106, 786, 6244, 51964, 447201, 3947306, 35538668, 325098696, 3013060258, 28232408848, 267003169668, 2545341982728, 24433290332007, 235967943943224, 2291147902820524, 22352525061549604, 219006814853751540, 2154083325737401740
Offset: 0
-
CoefficientList[InverseSeries[Series[x*((1-x)^3 - x^2), {x, 0, 30}], x]/x, x](* Vaclav Kotesovec, Jan 29 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^3-x^2))/x)
-
a(n) = sum(k=0, n\2, binomial(n+k, k)*binomial(4*n+k+2, n-2*k))/(n+1);
A370282
Coefficient of x^n in the expansion of 1/( (1-x)^3 - x )^n.
Original entry on oeis.org
1, 4, 42, 499, 6250, 80634, 1060269, 14127852, 190102482, 2577310285, 35150819132, 481734467955, 6628611532621, 91517611501008, 1267182734325900, 17589579427715124, 244689432718144770, 3410399867585709501, 47613678409439712861, 665756829352248572725
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+k-1, k)*binomial(4*n+2*k-1, n-k));
A369512
Expansion of (1/x) * Series_Reversion( x * ((1-x)^3-x)^2 ).
Original entry on oeis.org
1, 8, 106, 1706, 30459, 580138, 11548831, 237408978, 5001034821, 107387829120, 2341915361920, 51727723741200, 1154821390130868, 26016595619565008, 590718564607726952, 13504019611821648448, 310553715057038411358, 7179645587769992602252
Offset: 0
-
CoefficientList[InverseSeries[Series[x((1-x)^3-x)^2,{x,0,18}],x]/x,x] (* Stefano Spezia, Mar 31 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(serreverse(x*((1-x)^3-x)^2)/x)
-
a(n) = sum(k=0, n, binomial(2*n+k+1, k)*binomial(7*n+2*k+5, n-k))/(n+1);
A371433
Expansion of (1/x) * Series_Reversion( x * ((1-x)^3 + x) ).
Original entry on oeis.org
1, 2, 5, 11, 11, -77, -704, -3795, -15686, -48598, -74009, 376623, 4438840, 27458060, 126898948, 440550682, 849522927, -2621906045, -39993434701, -270428078305, -1339005344985, -5014789377825, -11407684195950, 18849058485855, 417417757017612, 3058172078113944
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^3+x))/x)
-
a(n) = sum(k=0, n, (-1)^k*binomial(n+k, k)*binomial(4*n+2*k+2, n-k))/(n+1);
A379187
G.f. A(x) satisfies A(x) = 1/((1 - x*A(x)^2) * (1 - x*A(x))^3).
Original entry on oeis.org
1, 4, 30, 286, 3091, 36063, 442898, 5642628, 73893561, 988585443, 13453580815, 185661101085, 2592069904059, 36545520229810, 519601325300487, 7441580996167052, 107255985242888943, 1554576968046707916, 22644622298400113411, 331322620547205661043
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+2*k+1, k)*binomial(4*n+2*k+2, n-k)/(n+2*k+1));
A379245
G.f. A(x) satisfies A(x) = ( (1 + x*A(x)^2)/(1 - x*A(x)) )^3.
Original entry on oeis.org
1, 6, 72, 1100, 18984, 352608, 6879152, 139012368, 2884353888, 61091682368, 1315450042368, 28709737064064, 633684940733696, 14120739728984832, 317243001537462528, 7178031348934793472, 163423203504309020160, 3741114809852278047744
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+3*k+3, k)*binomial(4*n+2*k+2, n-k)/(n+k+1));
Showing 1-9 of 9 results.