cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A371434 Expansion of (1/x) * Series_Reversion( x * ((1-x)^3 + x^2) ).

Original entry on oeis.org

1, 3, 14, 76, 444, 2702, 16840, 106389, 676566, 4307754, 27333384, 172040544, 1068547788, 6505380072, 38446578888, 217095119499, 1136270066490, 5125578859296, 15040187738184, -47786768551830, -1453703259770520, -18311261482519860, -186896777677695720
Offset: 0

Views

Author

Seiichi Manyama, Mar 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*((1-x)^3+x^2))/x)
    
  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n+k, k)*binomial(4*n+k+2, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+k,k) * binomial(4*n+k+2,n-2*k).

A370283 Coefficient of x^n in the expansion of 1/( (1-x)^3 - x^2 )^n.

Original entry on oeis.org

1, 3, 23, 201, 1855, 17643, 171059, 1680822, 16679031, 166763190, 1677365833, 16953705860, 172047413395, 1751870166998, 17890003430490, 183148065506136, 1879053717936423, 19315569214866495, 198890064249729314, 2051053032020625350, 21180292180328586305
Offset: 0

Views

Author

Seiichi Manyama, Feb 13 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n+k-1, k)*binomial(4*n+k-1, n-2*k));
Showing 1-2 of 2 results.