cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A156128 a(n) = 6^n * Catalan(n).

Original entry on oeis.org

1, 6, 72, 1080, 18144, 326592, 6158592, 120092544, 2401850880, 48997757952, 1015589892096, 21327387734016, 452796847276032, 9702789584486400, 209580255024906240, 4558370546791710720, 99747873141559787520, 2194453209114315325440, 48508965675158549299200
Offset: 0

Views

Author

Philippe Deléham, Feb 04 2009

Keywords

Comments

Number of Dyck n-paths with two types of up step and three types of down step. - David Scambler, Jun 21 2013

Crossrefs

Programs

  • Magma
    [6^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
  • Maple
    A156128_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 6*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od;convert(a,list)end: A156128_list(16); # Peter Luschny, May 19 2011
  • Mathematica
    Table[CatalanNumber[n]6^n, {n, 0, 16}] (* Alonso del Arte, Jul 19 2011 *)

Formula

a(n) = 6^n * A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
6, 6, 0, 0, 0, 0, ...
6, 6, 6, 0, 0, 0, ...
6, 6, 6, 6, 0, 0, ...
6, 6, 6, 6, 6, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 24*x). - Peter Luschny, Aug 26 2012
G.f.: c(6*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum{k=0..n} A085880(n,k) * 5^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 6*x/(1 - 6*x/(1 - 6*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 588/529 + 864*arctan(1/sqrt(23)) / (529*sqrt(23)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 564/625 - 432*log(3/2) / 3125. - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +12*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

A156266 a(n) = 7^n*Catalan(n).

Original entry on oeis.org

1, 7, 98, 1715, 33614, 705894, 15529668, 353299947, 8243665430, 196199237234, 4744454282204, 116239129913998, 2879153833254412, 71978845831360300, 1813866914950279560, 46026872966863343835, 1175038992212864189670
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Crossrefs

Programs

  • Magma
    [7^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
  • Maple
    A156266_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 7*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od;convert(a,list)end: A156266_list(16); # Peter Luschny, May 19 2011
  • Mathematica
    Table[7^n * CatalanNumber[n], {n, 0, 16}] (* Amiram Eldar, Jan 25 2022 *)

Formula

a(n) = 7^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
7, 7, 0, 0, 0, 0, ...
7, 7, 7, 0, 0, 0, ...
7, 7, 7, 7, 0, 0, ...
7, 7, 7, 7, 7, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 28*x). - Peter Luschny, Aug 26 2012
G.f.: c(7*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum_{k=0..n} A085880(n,k)*6^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 7*x/(1 - 7*x/(1 - 7*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 266/243 + 392*arctan(1/(3*sqrt(3))) / (729*sqrt(3)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 770/841 - 1176*arctanh(1/sqrt(29)) / (841*sqrt(29)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +14*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

Extensions

a(15) corrected by Vincenzo Librandi, Jul 19 2011

A156270 a(n) = 8^n*Catalan(n).

Original entry on oeis.org

1, 8, 128, 2560, 57344, 1376256, 34603008, 899678208, 23991418880, 652566593536, 18034567675904, 504967894925312, 14294475794808832, 408413594137395200, 11762311511156981760, 341107033823552471040, 9952299339793060331520
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Comments

A quarter of the count of And/Or-Trees with 2 variables [Chauvin]. - R. J. Mathar, Apr 01 2012

Crossrefs

Programs

Formula

a(n) = 8^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
8, 8, 0, 0, 0, 0, ...
8, 8, 8, 0, 0, 0, ...
8, 8, 8, 8, 0, 0, ...
8, 8, 8, 8, 8, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 32*x). - Peter Luschny, Aug 26 2012
G.f.: c(8*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum_{k=0..n} A085880(n,k)*7^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 8*x/(1 - 8*x/(1 - 8*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
(n+1)*a(n) +16*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Apr 14 2018
Sum_{n>=0} 1/a(n) = 1040/961 + 1536*arctan(1/sqrt(31)) / (961*sqrt(31)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 112/121 - 512*arctanh(1/sqrt(33)) / (363*sqrt(33)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence +(n+1)*a(n) +16*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

A256061 Number T(n,k) of 2n-length strings of balanced parentheses of exactly k different types; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 4, 0, 5, 30, 30, 0, 14, 196, 504, 336, 0, 42, 1260, 6300, 10080, 5040, 0, 132, 8184, 71280, 205920, 237600, 95040, 0, 429, 54054, 774774, 3603600, 7207200, 6486480, 2162160, 0, 1430, 363220, 8288280, 58378320, 180180000, 273873600, 201801600, 57657600
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2015

Keywords

Comments

Also number of binary trees with n inner nodes of exactly k different dimensions. T(2,2) = 4:
: balanced parentheses : ([]) : [()] : ()[] : []() :
:----------------------:-------:-------:-------:-------:
: trees : (1) : [2] : (1) : [2] :
: : / \ : / \ : / \ : / \ :
: : [2] : (1) : [2] : (1) :
: : / \ : / \ : / \ : / \ :

Examples

			A(3,2) = 30: (())[], (()[]), (([])), ()()[], ()([]), ()[()], ()[[]], ()[](), ()[][], ([()]), ([[]]), ([]()), ([])(), ([])[], ([][]), [(())], [()()], [()[]], [()](), [()][], [([])], [[()]], [[]()], [[]](), [](()), []()(), []()[], []([]), [][()], [][]().
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   2,     4;
  0,   5,    30,     30;
  0,  14,   196,    504,     336;
  0,  42,  1260,   6300,   10080,    5040;
  0, 132,  8184,  71280,  205920,  237600,   95040;
  0, 429, 54054, 774774, 3603600, 7207200, 6486480, 2162160;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A000108 (for n>0).
Main diagonal gives A001761.

Programs

  • Maple
    ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    A:= proc(n, k) option remember; k^n*ctln(n) end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A[0, 0] = 1; A[n_, k_] := A[n, k] = k^n*CatalanNumber[n]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 20 2017, translated from Maple *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * (k-i)^n * A000108(n).
T(n,k) = k! * A253180(n,k).
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A290605(n,k-i). - Alois P. Heinz, Oct 28 2019

A156273 a(n) = 9^n*Catalan(n).

Original entry on oeis.org

1, 9, 162, 3645, 91854, 2480058, 70150212, 2051893701, 61556811030, 1883638417518, 58564030799196, 1844766970174674, 58748732742485772, 1888352123865614100, 61182608813245896840, 1996082612532147384405, 65518476340761072970470, 2162109719245115408025510
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Crossrefs

Programs

  • Magma
    [9^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
  • Mathematica
    Table[9^n CatalanNumber[n],{n,0,20}] (* Harvey P. Dale, Sep 09 2012 *)

Formula

a(n) = 9^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
9, 9, 0, 0, 0, 0, ...
9, 9, 9, 0, 0, 0, ...
9, 9, 9, 9, 0, 0, ...
9, 9, 9, 9, 9, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 36*x). - Peter Luschny, Aug 26 2012
G.f.: c(9*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum{k=0..n} A085880(n,k)*8^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 9*x/(1 - 9*x/(1 - 9*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 1314/1225 + 1944*arctan(1/sqrt(35)) / (1225*sqrt(35)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 1278/1369 - 1944*arctanh(1/sqrt(37)) / (1369*sqrt(37)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +18*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

A291699 a(n) = n^n*(2*n)!/(n!*(n + 1)!).

Original entry on oeis.org

1, 1, 8, 135, 3584, 131250, 6158592, 353299947, 23991418880, 1883638417518, 167960000000000, 16772331868538246, 1854655886442627072, 225005916687384753700, 29718395534545380311040, 4245313393689422607421875, 652233889532678001886494720, 107247390031799133661006687830
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 30 2017

Keywords

Crossrefs

Main diagonal of A290605.

Programs

  • Maple
    seq(n^n*(2*n)!/n!/(n+1)!, n=0..50); # Robert Israel, Aug 30 2017
  • Mathematica
    Join[{1}, Table[n^n (2 n)!/(n! (n + 1)!), {n, 1, 17}]]
    Table[SeriesCoefficient[2/(1 + Sqrt[1 - 4 n x]), {x, 0, n}], {n, 0, 17}]
    Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-n x, 1, {i, 1, n}]), {x, 0, n}], {n, 0, 17}]
  • PARI
    a(n)=binomial(2*n,n)/(n+1)*n^n \\ Charles R Greathouse IV, Oct 23 2023

Formula

a(n) = [x^n] 2/(1 + sqrt(1 - 4*n*x)).
a(n) = [x^n] 1/(1 - n*x/(1 - n*x/(1 - n*x/(1 - n*x/(1 - n*x/(1 - ...)))))), a continued fraction.
a(n) = n! * [x^n] (BesselI(0,2*n*x) - BesselI(1,2*n*x))*exp(2*n*x).
a(n) = n^n*binomial(2*n,n)/(n + 1).
a(n) = A000312(n)*A000108(n).
a(n) = A290605(n,n).
a(n) ~ 4^n*n^(n-3/2)/sqrt(Pi).

A340968 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j*binomial(n,j)*Catalan(j).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 15, 1, 1, 5, 25, 71, 51, 1, 1, 6, 41, 199, 441, 188, 1, 1, 7, 61, 429, 1795, 2955, 731, 1, 1, 8, 85, 791, 5073, 17422, 20805, 2950, 1, 1, 9, 113, 1315, 11571, 64469, 177463, 151695, 12235, 1
Offset: 0

Views

Author

Seiichi Manyama, Jan 31 2021

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,     1,      1, ...
  1,   2,    3,     4,     5,      6, ...
  1,   5,   13,    25,    41,     61, ...
  1,  15,   71,   199,   429,    791, ...
  1,  51,  441,  1795,  5073,  11571, ...
  1, 188, 2955, 17422, 64469, 181776, ...
		

Crossrefs

Columns k=0..4 give A000012, A007317(n+1), A162326(n+1), A337167, A386387.
Main diagonal gives A338979.

Programs

  • Maple
    T_row := n -> k -> hypergeom([1/2, -n], [2], -4*k): for n from 0 to 6 do seq(simplify(T_row(n)(k)), k = 0..6) od; # Peter Luschny, Aug 27 2025
  • Mathematica
    T[n_, k_] := Sum[If[j == k == 0, 1, k^j] * Binomial[n, j] * CatalanNumber[j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 01 2021 *)
    A340968[n_, k_] := Hypergeometric2F1[1/2, -n, 2, -4*k]; Table[A340968[n, k], {n, 0, 6}, {k, 0, 7}] (* row-wise *) (* Peter Luschny, Aug 27 2025 *)
  • PARI
    T(n, k) = sum(j=0, n, k^j*binomial(n, j)*(2*j)!/(j!*(j+1)!));
    
  • PARI
    T(n, k) = 1+k*sum(j=0, n-1, T(j, k)*T(n-1-j, k));

Formula

G.f. A_k(x) of column k satisfies A_k(x) = 1/(1 - x) + k*x*A_k(x)^2.
A_k(x) = 2/( 1 - x + sqrt((1 - x) * (1 - (4*k+1)*x)) ).
T(n,k) = 1 + k * Sum_{j=0..n-1} T(j,k) * T(n-1-j,k).
(n+1) * T(n,k) = 2 * ((2*k+1) * n - k) * T(n-1,k) - (4*k+1) * (n-1) * T(n-2,k) for n > 1.
E.g.f. of column k: exp((2*k+1)*x) * (BesselI(0,2*k*x) - BesselI(1,2*k*x)). - Ilya Gutkovskiy, Feb 01 2021
T_row(n) = k -> hypergeom([1/2, -n], [2], -4*k). - Peter Luschny, Aug 27 2025

A156275 a(n) = 10^n*Catalan(n).

Original entry on oeis.org

1, 10, 200, 5000, 140000, 4200000, 132000000, 4290000000, 143000000000, 4862000000000, 167960000000000, 5878600000000000, 208012000000000000, 7429000000000000000, 267444000000000000000, 9694845000000000000000, 353576700000000000000000
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Comments

In general, for m >= 1, Sum_{k>=0} 1/(m^k * Catalan(k)) = 2*m*(8*m + 1) / (4*m - 1)^2 + 24 * m^2 * arcsin(1/(2*sqrt(m))) / (4*m - 1)^(5/2). - Vaclav Kotesovec, Nov 23 2021

Crossrefs

Programs

  • Magma
    [10^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
  • Mathematica
    Table[10^n CatalanNumber[n],{n,0,20}] (* Harvey P. Dale, Mar 12 2013 *)

Formula

a(n) = 10^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
10, 10, 0, 0, 0, ...
10, 10, 10, 0, 0, ...
10, 10, 10, 10, 0, ...
10, 10, 10, 10, 10, ...
... (End)
E.g.f.: KummerM(1/2, 2, 40*x). - Peter Luschny, Aug 26 2012
G.f.: c(10*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum_{k=0..n} A085880(n,k)*9^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 10*x/(1 - 10*x/(1 - 10*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 180/169 + 800*arctan(1/sqrt(39)) / (507*sqrt(39)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 1580/1681 - 2400*arctanh(1/sqrt(41)) / (1681*sqrt(41)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +20*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

Extensions

a(15) corrected by Vincenzo Librandi, Jul 19 2011
Showing 1-8 of 8 results.