cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001761 a(n) = (2*n)!/(n+1)!.

Original entry on oeis.org

1, 1, 4, 30, 336, 5040, 95040, 2162160, 57657600, 1764322560, 60949324800, 2346549004800, 99638080819200, 4626053752320000, 233153109116928000, 12677700308232960000, 739781100339240960000, 46113021921146019840000
Offset: 0

Views

Author

Keywords

Comments

According to the Beineke and Pippert paper, the number of dissections of a disk is given by D(n)=R(n)/(n-2)!, where R(n)=A001761(n-2) is the number of labeled planar 2-trees having n vertices and rooted at a given exterior edge. [Clarified by M. F. Hasler, Feb 22 2012]
a(n+1) is the number of labeled incomplete ternary trees on n vertices in which each left and middle child have a larger label than their parent. - Brian Drake, Jul 28 2008
For n>0: a(n) = A173333(2*n,n+1); cf. A006963, A001813. - Reinhard Zumkeller, Feb 19 2010

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A255982, A256061.

Programs

  • Maple
    seq(mul((n+k), k=2..n), n=0..17); # Zerinvary Lajos, Feb 15 2008
  • Mathematica
    Table[(2*n)!/(n+1)!,{n,0,20}] (* Vincenzo Librandi, Feb 23 2012 *)
  • MuPAD
    combinat::catalan(n)*n! $ n = 0..17; // Zerinvary Lajos, Feb 15 2007
    
  • PARI
    A001761(n)=binomial(2*n,n+1)*(n-1)!  \\ M. F. Hasler, Feb 23 2012
    
  • PARI
    {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
    {a(n)=sum(k=0,n,(-1)^(n-k)*(n+1)^(k-1)*Stirling1(n,k))} \\ Paul D. Hanna, Nov 09 2012
  • Sage
    [binomial(2*n,n)/(1+n)*factorial(n) for n in range(0, 18)] # Zerinvary Lajos, Dec 03 2009
    

Formula

a(n) = n!*Catalan(n) =n!* A000108(n). - N. J. A. Sloane, Apr 18 2014
a(n+2) = sum(A038455(n, m), m=1..n), n >= 1. - Wolfdieter Lang
E.g.f. for this sequence = o.g.f. for A000108. - Len Smiley, Dec 07 2001
Integral representation as the moment of a positive function on the positive half-axis: in Maple notation, a(n)=int(x^n*(-1/2+exp(-x/4)/sqrt(Pi*x)+erf(sqrt(x)/2)/2), x=0..infinity), n=0, 1... This representation is unique. - Karol A. Penson, Aug 21 2001
G.f.: If G_N(x)=1+sum('(2*k)!*(x^k)/(k+1)!', 'k'=1..N), G_N(x)=1+2*x/(G(0)-2*x); G(k)=4*x*(k^2)+6*k*x+k+2*x+2-2*x*(2*k+3)*((k+2)^2)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
a(n) = Sum_{k=0..n} (-1)^(n-k) * (n+1)^(k-1) * Stirling1(n,k). - Paul D. Hanna, Nov 09 2012
G.f.: Q(0) where Q(k) = 1 + x*(2*k+1)*(4*k+1)/(k+1 - 4*x*(k+1)^2*(4*k+3)/(4*x*(k+1)*(4*k+3) + (2*k+3)/Q(k+1) )); (continued fraction ). - Sergei N. Gladkovskii, Apr 05 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x/(x + (k+2)/(2*k+2)/(2*k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013
Let A(x) = sum(k>=0, a(k)*x^k /(2*k)! ) = ( exp(x)-1)/x, then A(x) = 1/Q(0), where Q(k) = 1 - x/( 1 + (2*k+1)/(1 - x/( 1 + 2*(k+1)/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2013
From Ilya Gutkovskiy, Jan 21 2017: (Start)
a(n) ~ sqrt(2)*4^n*n^(n-1)/exp(n).
Sum_{n>=0} 1/a(n) = (7*exp(1/4)*sqrt(Pi)*erf(1/2) + 10)/8 = 2.2865189388213215..., where erf() is the error function. (End)
D-finite with recurrence: (n+1)*a(n) -2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Feb 16 2020
Sum_{n>=0} (-1)^n/a(n) = 3/4 - 5*sqrt(Pi)*erfi(1/2)/(8*exp(1/4)), where erfi() is the imaginary error function. - Amiram Eldar, Apr 03 2022

A255982 Number T(n,k) of partitions of the k-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 4, 0, 5, 29, 30, 0, 14, 184, 486, 336, 0, 42, 1148, 5880, 9744, 5040, 0, 132, 7228, 64464, 192984, 230400, 95040, 0, 429, 46224, 679195, 3279060, 6792750, 6308280, 2162160, 0, 1430, 300476, 7043814, 51622600, 165293700, 259518600, 196756560, 57657600
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2015

Keywords

Examples

			A(3,1) = 5:
  [||-|---], [-|||---], [-|-|-|-], [---|||-], [---|-||].
.
A(2,2) = 4:
  ._______.  ._______.  ._______.  ._______.
  |   |   |  |   |   |  |   |   |  |       |
  |___|   |  |   |___|  |___|___|  |_______|
  |   |   |  |   |   |  |       |  |   |   |
  |___|___|  |___|___|  |_______|  |___|___|.
.
Triangle T(n,k) begins:
  1
  0,   1;
  0,   2,     4;
  0,   5,    29,     30;
  0,  14,   184,    486,     336;
  0,  42,  1148,   5880,    9744,    5040;
  0, 132,  7228,  64464,  192984,  230400,   95040;
  0, 429, 46224, 679195, 3279060, 6792750, 6308280, 2162160;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000108 (for n>0), A258416, A258417, A258418, A258419, A258420, A258421, A258422, A258423, A258424.
Main diagonal gives A001761.
Row sums give A258425.
T(2n,n) give A258426.

Programs

  • Maple
    b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
           A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1,
          -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n-1, k], Sum[ A[j, k]*b[n-j-1, k, t-1], {j, 0, n-2}]]];
    A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n+1, k, 2^j], {j, 1, k}]];
    T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 20 2016, after Alois P. Heinz *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A237018(n,k-i).

A253180 Number T(n,k) of 2n-length strings of balanced parentheses of exactly k different types that are introduced in ascending order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 5, 15, 5, 0, 14, 98, 84, 14, 0, 42, 630, 1050, 420, 42, 0, 132, 4092, 11880, 8580, 1980, 132, 0, 429, 27027, 129129, 150150, 60060, 9009, 429, 0, 1430, 181610, 1381380, 2432430, 1501500, 380380, 40040, 1430, 0, 4862, 1239810, 14707550, 37777740, 33795762, 12864852, 2246244, 175032, 4862
Offset: 0

Views

Author

Alois P. Heinz, Mar 23 2015

Keywords

Comments

In general, column k>0 is asymptotic to (4*k)^n / (k!*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 01 2015

Examples

			T(3,1) = 5: ()()(), ()(()), (())(), (()()), ((())).
T(3,2) = 15: ()()[], ()[](), ()[][], ()([]), ()[()], ()[[]], (())[], ([])(), ([])[], (()[]), ([]()), ([][]), (([])), ([()]), ([[]]).
T(3,3) = 5: ()[]{}, ()[{}], ([]){}, ([]{}), ([{}]).
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   2,     2;
  0,   5,    15,      5;
  0,  14,    98,     84,     14;
  0,  42,   630,   1050,    420,    42;
  0, 132,  4092,  11880,   8580,  1980,  132;
  0, 429, 27027, 129129, 150150, 60060, 9009, 429;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000108 (for n>0), A258390, A258391, A258392, A258393, A258394, A258395, A258396, A258397, A258398.
Main diagonal gives A000108.
First lower diagonal gives A002740(n+2).
T(2n,n) gives A258399.
Row sums give A064299.

Programs

  • Maple
    ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    A:= proc(n, k) option remember; k^n*ctln(n) end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i/((k-i)!*i!), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A[n_, k_] := A[n, k] = k^n*CatalanNumber[n]; T[0, 0] = 1; T[n_, k_] := Sum[A[n, k-i]*(-1)^i/((k-i)!*i!), {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 11 2017, adapted from Maple *)

Formula

T(n,k) = A256061(n,k)/k! = Sum_{i=0..k} (-1)^i * C(k,i) * (k-i)^n * A000108(n) / A000142(n).

A290605 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 2/(1 + sqrt(1 - 4*k*x)).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 40, 14, 0, 1, 5, 32, 135, 224, 42, 0, 1, 6, 50, 320, 1134, 1344, 132, 0, 1, 7, 72, 625, 3584, 10206, 8448, 429, 0, 1, 8, 98, 1080, 8750, 43008, 96228, 54912, 1430, 0, 1, 9, 128, 1715, 18144, 131250, 540672, 938223, 366080, 4862, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 07 2017

Keywords

Comments

Number of 2n-length strings of balanced parentheses of at most k different types. Also number of binary trees with n inner nodes of at most k different dimensions. - Alois P. Heinz, Oct 28 2019

Examples

			G.f. of column k: A(x) = 1 + k*x + 2*k^2*x^2 + 5*k^3*x^3 + 14*k^4*x^4 + 42*k^5*x^5 + 132*k^6*x^6 + ...
Square array begins:
  1,   1,     1,      1,      1,       1,  ...
  0,   1,     2,      3,      4,       5,  ...
  0,   2,     8,     18,     32,      50,  ...
  0,   5,    40,    135,    320,     625,  ...
  0,  14,   224,   1134,   3584,    8750,  ...
  0,  42,  1344,  10206,  43008,  131250,  ...
		

Crossrefs

Rows n=0-2 give: A000012, A001477, A001105.
Main diagonal gives A291699.

Programs

  • Maple
    ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    A:= proc(n, k) option remember; k^n*ctln(n) end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Oct 28 2019
  • Mathematica
    Table[Function[k, SeriesCoefficient[2/(1 + Sqrt[1 - 4 k x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten

Formula

A(n,k) = k^n*(2*n)!/(n!*(n + 1)!).
A(n,k) = k^n*A000108(n).
G.f. of column k: 2/(1 + sqrt(1 - 4*k*x)).
G.f. of column k: 1/(1 - k*x/(1 - k*x/(1 - k*x/(1 - k*x/(1 - k*x/(1 - ...)))))), a continued fraction.
E.g.f. of column k: (BesselI(0,2*k*x) - BesselI(1,2*k*x))*exp(2*k*x).
If g.f. = 2/(1 + sqrt(1 - 4*k*x)), then a(n) ~ k^n*4^n/(sqrt(Pi)*n^(3/2)).
A(n,k) = Sum_{i=0..k} binomial(k,i) * A256061(n,k-i). - Alois P. Heinz, Oct 28 2019
For fixed k >= 1, Sum_{n>=0} 1/A(n,k) = 2*k*(8*k + 1) / (4*k - 1)^2 + 24 * k^2 * arcsin(1/(2*sqrt(k))) / (4*k - 1)^(5/2). - Vaclav Kotesovec, Nov 23 2021
For fixed k >= 1, Sum_{n>=0} (-1)^n / A(n,k) = 2*k*(8*k - 1) / (4*k + 1)^2 - 24 * k^2 * log((1 + sqrt(4*k + 1))/(2*sqrt(k))) / (4*k + 1)^(5/2). - Vaclav Kotesovec, Nov 24 2021

A258427 Number T(n,k) of redundant binary trees with n inner nodes of exactly k different dimensions used for the partition of the k-dimensional hypercube by hierarchical bisection; triangle T(n,k), n>=3, 2<=k<=n-1, read by rows.

Original entry on oeis.org

1, 12, 18, 112, 420, 336, 956, 6816, 12936, 7200, 7830, 95579, 324540, 414450, 178200, 62744, 1244466, 6755720, 14886300, 14355000, 5045040, 496518, 15537456, 127063596, 430572780, 699460740, 542341800, 161441280
Offset: 3

Views

Author

Alois P. Heinz, May 29 2015

Keywords

Comments

T(n,k) is defined for all n>=0 and k>=0. The triangle displays only positive terms. T(n,k) = 0 for k in {0, 1} or k>=n.

Examples

			T(3,2) = 1. There are A256061(3,2) = 30 binary trees with 3 inner nodes of exactly 2 different dimensions, 28 of them have unique hypercube partitions, 2 of them have the same partition:
:              :                     : partition :
|--------------|---------------------|-----------|
|              |    (1)       [2]    |           |
|              |    / \       / \    |   .___.   |
|       trees: |  [2] [2]   (1) (1)  |   |_|_|   |
|              |  / \ / \   / \ / \  |   |_|_|   |
|    balanced  |                     |           |
| parentheses: |  ([])[]    [()]()   |           |
|--------------|---------------------|-----------|
Triangle T(n,k) begins:
.
. .
. .     .
. .     1,       .
. .    12,      18,       .
. .   112,     420,     336,        .
. .   956,    6816,   12936,     7200,        .
. .  7830,   95579,  324540,   414450,   178200,       .
. . 62744, 1244466, 6755720, 14886300, 14355000, 5045040,   .
		

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; k^n*binomial(2*n, n)/(n+1) end:
    B:= proc(n, k) option remember;
           add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
        end:
    b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
           H(n-1, k), add(H(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
        end:
    H:= proc(n, k) option remember; `if`(n=0, 1,
          -add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
        end:
    G:= proc(n, k) option remember;
           add(H(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
        end:
    T:= (n, k)-> B(n, k)-G(n, k):
    seq(seq(T(n, k), k=2..n-1), n=3..12);
  • Mathematica
    A[n_, k_] := A[n, k] = k^n*Binomial[2*n, n]/(n+1); B[n_, k_] := B[n, k] = Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; b[n_, k_, t_] := b[n, k, t] = If[t==0, 1, If[t==1, H[n-1, k], Sum[H[j, k]*b[n-j-1, k, t-1], {j, 0, n-2}]]]; H[n_, k_] := H[n, k] = If[n==0, 1, -Sum[Binomial[k, j]* (-1)^j* b[n+1, k, 2^j], {j, 1, k}]]; G[n_, k_] := G[n, k] = Sum[H[n, k-i]*(-1)^i* Binomial[k, i], {i, 0, k}]; T[n_, k_] := T[n, k] = B[n, k]-G[n, k]; Table[Table[T[n, k], {k, 2, n-1}], {n, 3, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

Formula

T(n,k) = A256061(n,k) - A255982(n,k).
Showing 1-5 of 5 results.