A001761
a(n) = (2*n)!/(n+1)!.
Original entry on oeis.org
1, 1, 4, 30, 336, 5040, 95040, 2162160, 57657600, 1764322560, 60949324800, 2346549004800, 99638080819200, 4626053752320000, 233153109116928000, 12677700308232960000, 739781100339240960000, 46113021921146019840000
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted in Math. Annalen, Vol. 191 (1971), pp. 87-98.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Peter J. Cameron, Some treelike objects, Quart. J. Math. Oxford, Vol. 38, No. 2 (1987), pp. 155-183. See p. 166. - _N. J. A. Sloane_, Apr 18 2014
- Ali Chouria, Vlad-Florin Drǎgoi, and Jean-Gabriel Luque, On recursively defined combinatorial classes and labelled trees, arXiv:2004.04203 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 80.
- K. A. Penson and J.-M. Sixdeniers, Integral Representations of Catalan and Related Numbers, J. Integer Sequences, Vol. 4 (2001), Article 01.2.5.
- Karol A. Penson and Allan I. Solomon, Coherent states from combinatorial sequences, arXiv:quant-ph/0111151, 2001.
-
seq(mul((n+k), k=2..n), n=0..17); # Zerinvary Lajos, Feb 15 2008
-
Table[(2*n)!/(n+1)!,{n,0,20}] (* Vincenzo Librandi, Feb 23 2012 *)
-
combinat::catalan(n)*n! $ n = 0..17; // Zerinvary Lajos, Feb 15 2007
-
A001761(n)=binomial(2*n,n+1)*(n-1)! \\ M. F. Hasler, Feb 23 2012
-
{Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{a(n)=sum(k=0,n,(-1)^(n-k)*(n+1)^(k-1)*Stirling1(n,k))} \\ Paul D. Hanna, Nov 09 2012
-
[binomial(2*n,n)/(1+n)*factorial(n) for n in range(0, 18)] # Zerinvary Lajos, Dec 03 2009
A255982
Number T(n,k) of partitions of the k-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 4, 0, 5, 29, 30, 0, 14, 184, 486, 336, 0, 42, 1148, 5880, 9744, 5040, 0, 132, 7228, 64464, 192984, 230400, 95040, 0, 429, 46224, 679195, 3279060, 6792750, 6308280, 2162160, 0, 1430, 300476, 7043814, 51622600, 165293700, 259518600, 196756560, 57657600
Offset: 0
A(3,1) = 5:
[||-|---], [-|||---], [-|-|-|-], [---|||-], [---|-||].
.
A(2,2) = 4:
._______. ._______. ._______. ._______.
| | | | | | | | | | |
|___| | | |___| |___|___| |_______|
| | | | | | | | | | |
|___|___| |___|___| |_______| |___|___|.
.
Triangle T(n,k) begins:
1
0, 1;
0, 2, 4;
0, 5, 29, 30;
0, 14, 184, 486, 336;
0, 42, 1148, 5880, 9744, 5040;
0, 132, 7228, 64464, 192984, 230400, 95040;
0, 429, 46224, 679195, 3279060, 6792750, 6308280, 2162160;
...
Columns k=0-10 give:
A000007,
A000108 (for n>0),
A258416,
A258417,
A258418,
A258419,
A258420,
A258421,
A258422,
A258423,
A258424.
-
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n-1, k], Sum[ A[j, k]*b[n-j-1, k, t-1], {j, 0, n-2}]]];
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n+1, k, 2^j], {j, 1, k}]];
T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 20 2016, after Alois P. Heinz *)
A253180
Number T(n,k) of 2n-length strings of balanced parentheses of exactly k different types that are introduced in ascending order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 5, 15, 5, 0, 14, 98, 84, 14, 0, 42, 630, 1050, 420, 42, 0, 132, 4092, 11880, 8580, 1980, 132, 0, 429, 27027, 129129, 150150, 60060, 9009, 429, 0, 1430, 181610, 1381380, 2432430, 1501500, 380380, 40040, 1430, 0, 4862, 1239810, 14707550, 37777740, 33795762, 12864852, 2246244, 175032, 4862
Offset: 0
T(3,1) = 5: ()()(), ()(()), (())(), (()()), ((())).
T(3,2) = 15: ()()[], ()[](), ()[][], ()([]), ()[()], ()[[]], (())[], ([])(), ([])[], (()[]), ([]()), ([][]), (([])), ([()]), ([[]]).
T(3,3) = 5: ()[]{}, ()[{}], ([]){}, ([]{}), ([{}]).
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 2;
0, 5, 15, 5;
0, 14, 98, 84, 14;
0, 42, 630, 1050, 420, 42;
0, 132, 4092, 11880, 8580, 1980, 132;
0, 429, 27027, 129129, 150150, 60060, 9009, 429;
...
Columns k=0-10 give:
A000007,
A000108 (for n>0),
A258390,
A258391,
A258392,
A258393,
A258394,
A258395,
A258396,
A258397,
A258398.
First lower diagonal gives
A002740(n+2).
-
ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
A:= proc(n, k) option remember; k^n*ctln(n) end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i/((k-i)!*i!), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
A[n_, k_] := A[n, k] = k^n*CatalanNumber[n]; T[0, 0] = 1; T[n_, k_] := Sum[A[n, k-i]*(-1)^i/((k-i)!*i!), {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 11 2017, adapted from Maple *)
A290605
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 2/(1 + sqrt(1 - 4*k*x)).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 40, 14, 0, 1, 5, 32, 135, 224, 42, 0, 1, 6, 50, 320, 1134, 1344, 132, 0, 1, 7, 72, 625, 3584, 10206, 8448, 429, 0, 1, 8, 98, 1080, 8750, 43008, 96228, 54912, 1430, 0, 1, 9, 128, 1715, 18144, 131250, 540672, 938223, 366080, 4862, 0
Offset: 0
G.f. of column k: A(x) = 1 + k*x + 2*k^2*x^2 + 5*k^3*x^3 + 14*k^4*x^4 + 42*k^5*x^5 + 132*k^6*x^6 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 8, 18, 32, 50, ...
0, 5, 40, 135, 320, 625, ...
0, 14, 224, 1134, 3584, 8750, ...
0, 42, 1344, 10206, 43008, 131250, ...
Columns k=0-10 give:
A000007,
A000108,
A151374,
A005159,
A151403,
A156058,
A156128,
A156266,
A156270,
A156273,
A156275.
-
ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
A:= proc(n, k) option remember; k^n*ctln(n) end:
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Oct 28 2019
-
Table[Function[k, SeriesCoefficient[2/(1 + Sqrt[1 - 4 k x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
A258427
Number T(n,k) of redundant binary trees with n inner nodes of exactly k different dimensions used for the partition of the k-dimensional hypercube by hierarchical bisection; triangle T(n,k), n>=3, 2<=k<=n-1, read by rows.
Original entry on oeis.org
1, 12, 18, 112, 420, 336, 956, 6816, 12936, 7200, 7830, 95579, 324540, 414450, 178200, 62744, 1244466, 6755720, 14886300, 14355000, 5045040, 496518, 15537456, 127063596, 430572780, 699460740, 542341800, 161441280
Offset: 3
T(3,2) = 1. There are A256061(3,2) = 30 binary trees with 3 inner nodes of exactly 2 different dimensions, 28 of them have unique hypercube partitions, 2 of them have the same partition:
: : : partition :
|--------------|---------------------|-----------|
| | (1) [2] | |
| | / \ / \ | .___. |
| trees: | [2] [2] (1) (1) | |_|_| |
| | / \ / \ / \ / \ | |_|_| |
| balanced | | |
| parentheses: | ([])[] [()]() | |
|--------------|---------------------|-----------|
Triangle T(n,k) begins:
.
. .
. . .
. . 1, .
. . 12, 18, .
. . 112, 420, 336, .
. . 956, 6816, 12936, 7200, .
. . 7830, 95579, 324540, 414450, 178200, .
. . 62744, 1244466, 6755720, 14886300, 14355000, 5045040, .
-
A:= proc(n, k) option remember; k^n*binomial(2*n, n)/(n+1) end:
B:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
H(n-1, k), add(H(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
H:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
G:= proc(n, k) option remember;
add(H(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
T:= (n, k)-> B(n, k)-G(n, k):
seq(seq(T(n, k), k=2..n-1), n=3..12);
-
A[n_, k_] := A[n, k] = k^n*Binomial[2*n, n]/(n+1); B[n_, k_] := B[n, k] = Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; b[n_, k_, t_] := b[n, k, t] = If[t==0, 1, If[t==1, H[n-1, k], Sum[H[j, k]*b[n-j-1, k, t-1], {j, 0, n-2}]]]; H[n_, k_] := H[n, k] = If[n==0, 1, -Sum[Binomial[k, j]* (-1)^j* b[n+1, k, 2^j], {j, 1, k}]]; G[n_, k_] := G[n, k] = Sum[H[n, k-i]*(-1)^i* Binomial[k, i], {i, 0, k}]; T[n_, k_] := T[n, k] = B[n, k]-G[n, k]; Table[Table[T[n, k], {k, 2, n-1}], {n, 3, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
Showing 1-5 of 5 results.
Comments