A002740
Number of tree-rooted bridgeless planar maps with two vertices and n faces.
Original entry on oeis.org
0, 0, 0, 2, 15, 84, 420, 1980, 9009, 40040, 175032, 755820, 3233230, 13728792, 57946200, 243374040, 1017958725, 4242920400, 17631691440, 73078721100, 302202005490, 1247182879800, 5137916074200, 21132472200840, 86794082253450, 356013544661424, 1458583920435600, 5969389748449400
Offset: 0
- J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933, p. 97.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Mireille Bousquet-Mélou, New enumerative results on two-dimensional directed animals, Discr. Math., Vol. 180, No. 1-3 (1998), pp. 73-106. See Cor. 6.6.
- Luca Ferrari and Emanuele Munarini, Enumeration of saturated chains in Dyck lattices, arXiv preprint arXiv:1203.6807 [math.CO], 2012.
- J. Fürlinger and J. Hofbauer, q-Catalan numbers, J. Comb. Theory, Series A, Vol. 40, No. 2 (1985), pp. 248-264.
- Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
- J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
- J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933. (Annotated scans of some selected pages)
- Mark Shattuck, Parity theorems for statistics on permutations and Catalan words, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 5 (2005), Paper A07.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus III: Nonseparable maps, J. Combinatorial Theory Ser. B, Vol. 18, No. 3 (1975), pp. 222-259. See Table VIIIb.
-
[(n-2)*Binomial(2*n-2,n-2)/2 : n in [0..30]]; // Wesley Ivan Hurt, Sep 24 2014
-
with(combinat):for n from 0 to 22 do printf(`%d, `,n*sum(binomial(2*n, n)/(n+1)/2, k=2..n)) od: # Zerinvary Lajos, Mar 13 2007
a:=n->sum(sum(binomial(2*n,n)/(n+1)/2, j=1..n),k=2..n): seq(a(n), n=0..25); # Zerinvary Lajos, May 09 2007
A002740:=n->(n-2)*binomial(2*n-2,n-2)/2+0^n: seq(A002740(n), n=0..30); # Wesley Ivan Hurt, Sep 24 2014
-
a[n_] := (n-1)(n-2)Binomial[2(n-1), n-1]/(2n); a[0] = 0; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Nov 16 2011 *)
-
combinat::catalan(n) *binomial(n,2) $ n = 0..22 // Zerinvary Lajos, Feb 15 2007
-
a(n)=if(n<3,0,(2*(n-1))!/(2*n!*(n-3)!)); /* Joerg Arndt, Sep 28 2012 */
A290605
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 2/(1 + sqrt(1 - 4*k*x)).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 40, 14, 0, 1, 5, 32, 135, 224, 42, 0, 1, 6, 50, 320, 1134, 1344, 132, 0, 1, 7, 72, 625, 3584, 10206, 8448, 429, 0, 1, 8, 98, 1080, 8750, 43008, 96228, 54912, 1430, 0, 1, 9, 128, 1715, 18144, 131250, 540672, 938223, 366080, 4862, 0
Offset: 0
G.f. of column k: A(x) = 1 + k*x + 2*k^2*x^2 + 5*k^3*x^3 + 14*k^4*x^4 + 42*k^5*x^5 + 132*k^6*x^6 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 8, 18, 32, 50, ...
0, 5, 40, 135, 320, 625, ...
0, 14, 224, 1134, 3584, 8750, ...
0, 42, 1344, 10206, 43008, 131250, ...
Columns k=0-10 give:
A000007,
A000108,
A151374,
A005159,
A151403,
A156058,
A156128,
A156266,
A156270,
A156273,
A156275.
-
ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
A:= proc(n, k) option remember; k^n*ctln(n) end:
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Oct 28 2019
-
Table[Function[k, SeriesCoefficient[2/(1 + Sqrt[1 - 4 k x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
A256061
Number T(n,k) of 2n-length strings of balanced parentheses of exactly k different types; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 4, 0, 5, 30, 30, 0, 14, 196, 504, 336, 0, 42, 1260, 6300, 10080, 5040, 0, 132, 8184, 71280, 205920, 237600, 95040, 0, 429, 54054, 774774, 3603600, 7207200, 6486480, 2162160, 0, 1430, 363220, 8288280, 58378320, 180180000, 273873600, 201801600, 57657600
Offset: 0
A(3,2) = 30: (())[], (()[]), (([])), ()()[], ()([]), ()[()], ()[[]], ()[](), ()[][], ([()]), ([[]]), ([]()), ([])(), ([])[], ([][]), [(())], [()()], [()[]], [()](), [()][], [([])], [[()]], [[]()], [[]](), [](()), []()(), []()[], []([]), [][()], [][]().
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 4;
0, 5, 30, 30;
0, 14, 196, 504, 336;
0, 42, 1260, 6300, 10080, 5040;
0, 132, 8184, 71280, 205920, 237600, 95040;
0, 429, 54054, 774774, 3603600, 7207200, 6486480, 2162160;
...
-
ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
A:= proc(n, k) option remember; k^n*ctln(n) end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
A[0, 0] = 1; A[n_, k_] := A[n, k] = k^n*CatalanNumber[n]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 20 2017, translated from Maple *)
A064299
a(n) = B(n)*C(n), where B(n) are Bell numbers (A000110) and C(n) are Catalan numbers (A000108).
Original entry on oeis.org
1, 1, 4, 25, 210, 2184, 26796, 376233, 5920200, 102816714, 1947916100, 39890416020, 876478739164, 20537052247300, 510548782729680, 13407568735200525, 370553407586717490, 10742998644116921160, 325786278993936753300, 10307990595756667951830
Offset: 0
A258399
Number of 4n-length strings of balanced parentheses of exactly n different types that are introduced in ascending order.
Original entry on oeis.org
1, 2, 98, 11880, 2432430, 714249900, 275335499824, 131928199603200, 75727786603836510, 50713478000403718500, 38843740303576863755100, 33508462196084294380001040, 32157574295254903735909896240, 33990046387543889224733323929120
Offset: 0
a(0) = 1: the empty string.
a(1) = 2: ()(), (()).
a(2) = A000108(4) * (2^3-1) = 14*7 = 98.
-
ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
A:= proc(n, k) option remember; k^n*ctln(n) end:
a:= n-> add(A(2*n, n-i)*(-1)^i/((n-i)!*i!), i=0..n):
seq(a(n), n=0..15);
-
A[n_, k_] := A[n, k] = k^n CatalanNumber[n];
a[n_] := If[n==0, 1, Sum[A[2n, n-i] (-1)^i/((n-i)! i!), {i, 0, n}]];
a /@ Range[0, 15] (* Jean-François Alcover, Jan 01 2021, after Alois P. Heinz *)
A258390
Number of 2n-length strings of balanced parentheses of exactly 2 different types that are introduced in ascending order.
Original entry on oeis.org
2, 15, 98, 630, 4092, 27027, 181610, 1239810, 8582756, 60138078, 425800564, 3042175500, 21906338040, 158830645635, 1158564772890, 8496271312650, 62604582047700, 463275674416170, 3441483002640540, 25654715940496500, 191852749820189640, 1438895966711035950
Offset: 2
-
a:= proc(n) option remember; `if`(n<3, [0$2, 2][n+1],
(2*n-1)*(6*n*a(n-1) -8*(2*n-3)*a(n-2))/(n*(n+1)))
end:
seq(a(n), n=2..25);
-
Table[(2^(n-1)-1)*Binomial[2n,n]/(n+1),{n,2,20}] (* Vaclav Kotesovec, Jun 01 2015 *)
A258391
Number of 2n-length strings of balanced parentheses of exactly 3 different types that are introduced in ascending order.
Original entry on oeis.org
5, 84, 1050, 11880, 129129, 1381380, 14707550, 156706680, 1675459786, 17998446312, 194361212500, 2110052926800, 23026236054345, 252513376831620, 2781895215981750, 30778564965687000, 341873708072702190, 3811170628172227320, 42628644369844747500
Offset: 3
A258392
Number of 2n-length strings of balanced parentheses of exactly 4 different types that are introduced in ascending order.
Original entry on oeis.org
14, 420, 8580, 150150, 2432430, 37777740, 572827580, 8568059500, 127199546012, 1881416537000, 27792098497800, 410634370077750, 6074408847920670, 90017212151219100, 1336818529866319500, 19898794932394570500, 296909055625560798420, 4440849374395184751000
Offset: 4
A258393
Number of 2n-length strings of balanced parentheses of exactly 5 different types that are introduced in ascending order.
Original entry on oeis.org
42, 1980, 60060, 1501500, 33795762, 714249900, 14504269780, 286931752800, 5578065392900, 107178276605400, 2043352620527400, 38758743724018500, 732849800716048290, 13831507110589591500, 260829110106412824900, 4917878997439418010000, 92758042341429880435020
Offset: 5
A258394
Number of 2n-length strings of balanced parentheses of exactly 6 different types that are introduced in ascending order.
Original entry on oeis.org
132, 9009, 380380, 12864852, 383402292, 10551322782, 275335499824, 6924802684800, 169656773406120, 4078556074277685, 96700630711999860, 2269529269318731420, 52868514692841609300, 1224857602490265215010, 28265620407321158141280, 650452332645092821924080
Offset: 6
Showing 1-10 of 14 results.
Next
Comments