1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 39, 14, 0, 1, 5, 32, 132, 212, 42, 0, 1, 6, 50, 314, 1080, 1232, 132, 0, 1, 7, 72, 615, 3440, 9450, 7492, 429, 0, 1, 8, 98, 1065, 8450, 40320, 86544, 47082, 1430, 0, 1, 9, 128, 1694, 17604, 124250, 494736, 819154, 303336, 4862, 0
Offset: 0
A256061
Number T(n,k) of 2n-length strings of balanced parentheses of exactly k different types; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 2, 4, 0, 5, 30, 30, 0, 14, 196, 504, 336, 0, 42, 1260, 6300, 10080, 5040, 0, 132, 8184, 71280, 205920, 237600, 95040, 0, 429, 54054, 774774, 3603600, 7207200, 6486480, 2162160, 0, 1430, 363220, 8288280, 58378320, 180180000, 273873600, 201801600, 57657600
Offset: 0
A(3,2) = 30: (())[], (()[]), (([])), ()()[], ()([]), ()[()], ()[[]], ()[](), ()[][], ([()]), ([[]]), ([]()), ([])(), ([])[], ([][]), [(())], [()()], [()[]], [()](), [()][], [([])], [[()]], [[]()], [[]](), [](()), []()(), []()[], []([]), [][()], [][]().
Triangle T(n,k) begins:
1;
0, 1;
0, 2, 4;
0, 5, 30, 30;
0, 14, 196, 504, 336;
0, 42, 1260, 6300, 10080, 5040;
0, 132, 8184, 71280, 205920, 237600, 95040;
0, 429, 54054, 774774, 3603600, 7207200, 6486480, 2162160;
...
-
ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
A:= proc(n, k) option remember; k^n*ctln(n) end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
-
A[0, 0] = 1; A[n_, k_] := A[n, k] = k^n*CatalanNumber[n]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 20 2017, translated from Maple *)
A258426
Number of partitions of the n-dimensional hypercube resulting from a sequence of 2n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
Original entry on oeis.org
1, 2, 184, 64464, 51622600, 74699100720, 171052924578480, 569565504689176800, 2601107886874207253760, 15609810973119409265234400, 119149819949135773678717267200, 1127426871984268618976053945104000, 12953029027945569352833762868999449600
Offset: 0
-
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
a:= n-> T(2*n,n):
seq(a(n), n=0..15);
-
b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n - 1, k], Sum[A[j, k]*b[n - j - 1, k, t - 1], {j, 0, n - 2}]]]; A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n + 1, k, 2^j], {j, 1, k}]]; T[n_, k_] := T[n, k] = Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; a[n_] := T[2*n, n]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Dec 18 2016, after Alois P. Heinz *)
A258427
Number T(n,k) of redundant binary trees with n inner nodes of exactly k different dimensions used for the partition of the k-dimensional hypercube by hierarchical bisection; triangle T(n,k), n>=3, 2<=k<=n-1, read by rows.
Original entry on oeis.org
1, 12, 18, 112, 420, 336, 956, 6816, 12936, 7200, 7830, 95579, 324540, 414450, 178200, 62744, 1244466, 6755720, 14886300, 14355000, 5045040, 496518, 15537456, 127063596, 430572780, 699460740, 542341800, 161441280
Offset: 3
T(3,2) = 1. There are A256061(3,2) = 30 binary trees with 3 inner nodes of exactly 2 different dimensions, 28 of them have unique hypercube partitions, 2 of them have the same partition:
: : : partition :
|--------------|---------------------|-----------|
| | (1) [2] | |
| | / \ / \ | .___. |
| trees: | [2] [2] (1) (1) | |_|_| |
| | / \ / \ / \ / \ | |_|_| |
| balanced | | |
| parentheses: | ([])[] [()]() | |
|--------------|---------------------|-----------|
Triangle T(n,k) begins:
.
. .
. . .
. . 1, .
. . 12, 18, .
. . 112, 420, 336, .
. . 956, 6816, 12936, 7200, .
. . 7830, 95579, 324540, 414450, 178200, .
. . 62744, 1244466, 6755720, 14886300, 14355000, 5045040, .
-
A:= proc(n, k) option remember; k^n*binomial(2*n, n)/(n+1) end:
B:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
H(n-1, k), add(H(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
H:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
G:= proc(n, k) option remember;
add(H(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
T:= (n, k)-> B(n, k)-G(n, k):
seq(seq(T(n, k), k=2..n-1), n=3..12);
-
A[n_, k_] := A[n, k] = k^n*Binomial[2*n, n]/(n+1); B[n_, k_] := B[n, k] = Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; b[n_, k_, t_] := b[n, k, t] = If[t==0, 1, If[t==1, H[n-1, k], Sum[H[j, k]*b[n-j-1, k, t-1], {j, 0, n-2}]]]; H[n_, k_] := H[n, k] = If[n==0, 1, -Sum[Binomial[k, j]* (-1)^j* b[n+1, k, 2^j], {j, 1, k}]]; G[n_, k_] := G[n, k] = Sum[H[n, k-i]*(-1)^i* Binomial[k, i], {i, 0, k}]; T[n_, k_] := T[n, k] = B[n, k]-G[n, k]; Table[Table[T[n, k], {k, 2, n-1}], {n, 3, 12}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
A258416
Number of partitions of the 2-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
Original entry on oeis.org
4, 29, 184, 1148, 7228, 46224, 300476, 1983102, 13266032, 89795420, 614058228, 4236652416, 29457698192, 206215486597, 1452248529432, 10281676045348, 73137772914324, 522472109334560, 3746685545297640, 26961148855455180, 194626321451800800, 1409026233004925340
Offset: 2
-
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
a:= n-> T(n, 2):
seq(a(n), n=2..25);
-
b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n - 1, k], Sum[A[j, k]*b[n - j - 1, k, t - 1], {j, 0, n - 2}]]];
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n + 1, k, 2^j], {j, 1, k}]];
T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
a[n_] := T[n, 2];
a /@ Range[2, 25] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
A258417
Number of partitions of the 3-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
Original entry on oeis.org
30, 486, 5880, 64464, 679195, 7043814, 72707844, 751082244, 7785793080, 81092511276, 849060054420, 8937364804760, 94564644817767, 1005496779910572, 10740560345206680, 115218669255806304, 1240869923563291014, 13412271463669969704, 145454088924589697192
Offset: 3
-
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
a:= n-> T(n, 3):
seq(a(n), n=3..25);
-
b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n - 1, k], Sum[A[j, k]*b[n - j - 1, k, t - 1], {j, 0, n - 2}]]];
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n + 1, k, 2^j], {j, 1, k}]];
T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
a[n_] := T[n, 3];
a /@ Range[3, 25] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
A258418
Number of partitions of the 4-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
Original entry on oeis.org
336, 9744, 192984, 3279060, 51622600, 779602164, 11499880768, 167393051696, 2419080596520, 34838703973728, 501182126787744, 7212689238965297, 103937431212291680, 1500609318117978064, 21713411768745550544, 314940143510352714144, 4579270473409470432352
Offset: 4
-
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
a:= n-> T(n, 4):
seq(a(n), n=4..25);
-
b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n - 1, k], Sum[A[j, k]*b[n - j - 1, k, t - 1], {j, 0, n - 2}]]];
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n + 1, k, 2^j], {j, 1, k}]];
T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
a[n_] := T[n, 4];
a /@ Range[4, 25] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
A258419
Number of partitions of the 5-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
Original entry on oeis.org
5040, 230400, 6792750, 165293700, 3624918660, 74699100720, 1479942440340, 28577108044800, 542482698531000, 10181610525525360, 189663357076785270, 3515970161266821510, 64985380300281057950, 1199146771516702098500, 22111945264260791498090
Offset: 5
-
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
a:= n-> T(n, 5):
seq(a(n), n=5..25);
-
b[n_, k_, t_] := b[n, k, t] = If[t == 0, 1, If[t == 1, A[n - 1, k], Sum[A[j, k]*b[n - j - 1, k, t - 1], {j, 0, n - 2}]]];
A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[Binomial[k, j]*(-1)^j*b[n + 1, k, 2^j], {j, 1, k}]];
T[n_, k_] := Sum[A[n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
a[n_] := T[n, 5];
a /@ Range[5, 25] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz *)
A258420
Number of partitions of the 6-dimensional hypercube resulting from a sequence of n bisections, each of which splits any part perpendicular to any of the axes, such that each axis is used at least once.
Original entry on oeis.org
95040, 6308280, 259518600, 8563232700, 249224561040, 6703099068120, 171052924578480, 4209175565848800, 100941470303368480, 2376150752752629210, 55182874193888254800, 1268931845185709426820, 28968880808493233206500, 657875495503038733415880
Offset: 6
-
b:= proc(n, k, t) option remember; `if`(t=0, 1, `if`(t=1,
A(n-1, k), add(A(j, k)*b(n-j-1, k, t-1), j=0..n-2)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
-add(binomial(k, j)*(-1)^j*b(n+1, k, 2^j), j=1..k))
end:
T:= proc(n, k) option remember;
add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k)
end:
a:= n-> T(n, 6):
seq(a(n), n=6..25);
Comments