cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A085880 Triangle T(n,k) read by rows: multiply row n of Pascal's triangle (A007318) by the n-th Catalan number (A000108).

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 14, 56, 84, 56, 14, 42, 210, 420, 420, 210, 42, 132, 792, 1980, 2640, 1980, 792, 132, 429, 3003, 9009, 15015, 15015, 9009, 3003, 429, 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430, 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862
Offset: 0

Views

Author

N. J. A. Sloane, Aug 17 2003

Keywords

Comments

Coefficients of terms in the series reversion of (1-k*x-(k+1)*x^2)/(1+x). - Paul Barry, May 21 2005
Equals A131427 * A007318 as infinite lower triangular matrices. [Philippe Deléham, Sep 15 2008]
Sum_{k=0..n} T(n,k)*x^k = A168491(n), A000007(n), A000108(n), A151374(n), A005159(n), A151403(n), A156058(n), A156128(n), A156266(n), A156270(n), A156273(n), A156275(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Nov 15 2013
Diagonal sums are A052709(n+1). - Philippe Deléham, Nov 15 2013

Examples

			Triangle starts:
[ 1]     1;
[ 2]     1,     1;
[ 3]     2,     4,      2;
[ 4]     5,    15,     15,      5;
[ 5]    14,    56,     84,     56,     14;
[ 6]    42,   210,    420,    420,    210,     42;
[ 7]   132,   792,   1980,   2640,   1980,    792,    132;
[ 8]   429,  3003,   9009,  15015,  15015,   9009,   3003,    429;
[ 9]  1430, 11440,  40040,  80080, 100100,  80080,  40040,  11440,  1430;
[10]  4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862;
...
		

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> Binomial(n,k)*Binomial(2*n,n)/( n+1) ))); # G. C. Greubel, Feb 07 2020
  • Magma
    [Binomial(n,k)*Catalan(n): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 07 2020
    
  • Maple
    seq(seq(binomial(n, k)*binomial(2*n, n)/(n+1), k = 0..n), n = 0..10); # G. C. Greubel, Feb 07 2020
  • Mathematica
    Table[Binomial[n, k]*CatalanNumber[n], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2020 *)
  • PARI
    tabl(nn) = {for (n=0, nn, c =  binomial(2*n,n)/(n+1); for (k=0, n, print1(c*binomial(n, k), ", ");); print(););} \\ Michel Marcus, Apr 09 2015
    
  • Sage
    [[binomial(n,k)*catalan_number(n) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 07 2020
    

Formula

Triangle given by [1, 1, 1, 1, 1, 1, ...] DELTA [1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
Sum_{k>=0} T(n, k) = A151374(n) (row sums). - Philippe Deléham, Aug 11 2005
G.f.: (1-sqrt(1-4*(x+y)))/(2*(x+y)). - Vladimir Kruchinin, Apr 09 2015

A290605 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 2/(1 + sqrt(1 - 4*k*x)).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 40, 14, 0, 1, 5, 32, 135, 224, 42, 0, 1, 6, 50, 320, 1134, 1344, 132, 0, 1, 7, 72, 625, 3584, 10206, 8448, 429, 0, 1, 8, 98, 1080, 8750, 43008, 96228, 54912, 1430, 0, 1, 9, 128, 1715, 18144, 131250, 540672, 938223, 366080, 4862, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 07 2017

Keywords

Comments

Number of 2n-length strings of balanced parentheses of at most k different types. Also number of binary trees with n inner nodes of at most k different dimensions. - Alois P. Heinz, Oct 28 2019

Examples

			G.f. of column k: A(x) = 1 + k*x + 2*k^2*x^2 + 5*k^3*x^3 + 14*k^4*x^4 + 42*k^5*x^5 + 132*k^6*x^6 + ...
Square array begins:
  1,   1,     1,      1,      1,       1,  ...
  0,   1,     2,      3,      4,       5,  ...
  0,   2,     8,     18,     32,      50,  ...
  0,   5,    40,    135,    320,     625,  ...
  0,  14,   224,   1134,   3584,    8750,  ...
  0,  42,  1344,  10206,  43008,  131250,  ...
		

Crossrefs

Rows n=0-2 give: A000012, A001477, A001105.
Main diagonal gives A291699.

Programs

  • Maple
    ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    A:= proc(n, k) option remember; k^n*ctln(n) end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Oct 28 2019
  • Mathematica
    Table[Function[k, SeriesCoefficient[2/(1 + Sqrt[1 - 4 k x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten

Formula

A(n,k) = k^n*(2*n)!/(n!*(n + 1)!).
A(n,k) = k^n*A000108(n).
G.f. of column k: 2/(1 + sqrt(1 - 4*k*x)).
G.f. of column k: 1/(1 - k*x/(1 - k*x/(1 - k*x/(1 - k*x/(1 - k*x/(1 - ...)))))), a continued fraction.
E.g.f. of column k: (BesselI(0,2*k*x) - BesselI(1,2*k*x))*exp(2*k*x).
If g.f. = 2/(1 + sqrt(1 - 4*k*x)), then a(n) ~ k^n*4^n/(sqrt(Pi)*n^(3/2)).
A(n,k) = Sum_{i=0..k} binomial(k,i) * A256061(n,k-i). - Alois P. Heinz, Oct 28 2019
For fixed k >= 1, Sum_{n>=0} 1/A(n,k) = 2*k*(8*k + 1) / (4*k - 1)^2 + 24 * k^2 * arcsin(1/(2*sqrt(k))) / (4*k - 1)^(5/2). - Vaclav Kotesovec, Nov 23 2021
For fixed k >= 1, Sum_{n>=0} (-1)^n / A(n,k) = 2*k*(8*k - 1) / (4*k + 1)^2 - 24 * k^2 * log((1 + sqrt(4*k + 1))/(2*sqrt(k))) / (4*k + 1)^(5/2). - Vaclav Kotesovec, Nov 24 2021

A156270 a(n) = 8^n*Catalan(n).

Original entry on oeis.org

1, 8, 128, 2560, 57344, 1376256, 34603008, 899678208, 23991418880, 652566593536, 18034567675904, 504967894925312, 14294475794808832, 408413594137395200, 11762311511156981760, 341107033823552471040, 9952299339793060331520
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Comments

A quarter of the count of And/Or-Trees with 2 variables [Chauvin]. - R. J. Mathar, Apr 01 2012

Crossrefs

Programs

Formula

a(n) = 8^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
8, 8, 0, 0, 0, 0, ...
8, 8, 8, 0, 0, 0, ...
8, 8, 8, 8, 0, 0, ...
8, 8, 8, 8, 8, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 32*x). - Peter Luschny, Aug 26 2012
G.f.: c(8*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum_{k=0..n} A085880(n,k)*7^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 8*x/(1 - 8*x/(1 - 8*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
(n+1)*a(n) +16*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Apr 14 2018
Sum_{n>=0} 1/a(n) = 1040/961 + 1536*arctan(1/sqrt(31)) / (961*sqrt(31)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 112/121 - 512*arctanh(1/sqrt(33)) / (363*sqrt(33)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence +(n+1)*a(n) +16*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

A156273 a(n) = 9^n*Catalan(n).

Original entry on oeis.org

1, 9, 162, 3645, 91854, 2480058, 70150212, 2051893701, 61556811030, 1883638417518, 58564030799196, 1844766970174674, 58748732742485772, 1888352123865614100, 61182608813245896840, 1996082612532147384405, 65518476340761072970470, 2162109719245115408025510
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Crossrefs

Programs

  • Magma
    [9^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
  • Mathematica
    Table[9^n CatalanNumber[n],{n,0,20}] (* Harvey P. Dale, Sep 09 2012 *)

Formula

a(n) = 9^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
9, 9, 0, 0, 0, 0, ...
9, 9, 9, 0, 0, 0, ...
9, 9, 9, 9, 0, 0, ...
9, 9, 9, 9, 9, 0, ...
... (End)
E.g.f.: KummerM(1/2, 2, 36*x). - Peter Luschny, Aug 26 2012
G.f.: c(9*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum{k=0..n} A085880(n,k)*8^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 9*x/(1 - 9*x/(1 - 9*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 1314/1225 + 1944*arctan(1/sqrt(35)) / (1225*sqrt(35)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 1278/1369 - 1944*arctanh(1/sqrt(37)) / (1369*sqrt(37)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +18*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

A156362 a(2*n+2) = 8*a(2*n+1), a(2*n+1) = 8*a(2*n) - 7^n*A000108(n), a(0)=1.

Original entry on oeis.org

1, 7, 56, 441, 3528, 28126, 225008, 1798349, 14386792, 115060722, 920485776, 7363180314, 58905442512, 471228010428, 3769824083424, 30158239367445, 241265914939560, 1930119075851050, 15440952606808400, 123527424655229966
Offset: 0

Views

Author

Philippe Deléham, Feb 08 2009

Keywords

Comments

Hankel transform is 7^C(n+1,2).

Crossrefs

Programs

  • Magma
    [n le 3 select Factorial(n+5)/720 else (8*n*Self(n-1) + 28*(n-3)*Self(n-2) - 224*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
    
  • Mathematica
    a[n_]:= a[n]= If[n==0, 1, If[OddQ[n], 8*a[n-1] -7^((n-1)/2)*CatalanNumber[(n-1)/2], 8*a[n-1]]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Nov 09 2022 *)
  • SageMath
    def a(n): # a = A156362
        if (n==0): return 1
        elif (n%2==1): return 8*a(n-1) - 7^((n-1)/2)*catalan_number((n-1)/2)
        else: return 8*a(n-1)
    [a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022

Formula

a(n) = Sum_{k=0..n} A120730(n,k) * 7^k.
a(n) = ( 8*(n+1)*a(n-1) + 28*(n-2)*a(n-2) - 224*(n-2)*a(n-3) )/(n+1). - G. C. Greubel, Nov 09 2022

A156275 a(n) = 10^n*Catalan(n).

Original entry on oeis.org

1, 10, 200, 5000, 140000, 4200000, 132000000, 4290000000, 143000000000, 4862000000000, 167960000000000, 5878600000000000, 208012000000000000, 7429000000000000000, 267444000000000000000, 9694845000000000000000, 353576700000000000000000
Offset: 0

Views

Author

Philippe Deléham, Feb 07 2009

Keywords

Comments

In general, for m >= 1, Sum_{k>=0} 1/(m^k * Catalan(k)) = 2*m*(8*m + 1) / (4*m - 1)^2 + 24 * m^2 * arcsin(1/(2*sqrt(m))) / (4*m - 1)^(5/2). - Vaclav Kotesovec, Nov 23 2021

Crossrefs

Programs

  • Magma
    [10^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
  • Mathematica
    Table[10^n CatalanNumber[n],{n,0,20}] (* Harvey P. Dale, Mar 12 2013 *)

Formula

a(n) = 10^n*A000108(n).
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) is the upper left term in M^n, M = an infinite square production matrix:
10, 10, 0, 0, 0, ...
10, 10, 10, 0, 0, ...
10, 10, 10, 10, 0, ...
10, 10, 10, 10, 10, ...
... (End)
E.g.f.: KummerM(1/2, 2, 40*x). - Peter Luschny, Aug 26 2012
G.f.: c(10*x) with c(x) the o.g.f. of A000108 (Catalan). - Philippe Deléham, Nov 15 2013
a(n) = Sum_{k=0..n} A085880(n,k)*9^k. - Philippe Deléham, Nov 15 2013
G.f.: 1/(1 - 10*x/(1 - 10*x/(1 - 10*x/(1 - ...)))), a continued fraction. - Ilya Gutkovskiy, Aug 08 2017
Sum_{n>=0} 1/a(n) = 180/169 + 800*arctan(1/sqrt(39)) / (507*sqrt(39)). - Vaclav Kotesovec, Nov 23 2021
Sum_{n>=0} (-1)^n/a(n) = 1580/1681 - 2400*arctanh(1/sqrt(41)) / (1681*sqrt(41)). - Amiram Eldar, Jan 25 2022
D-finite with recurrence (n+1)*a(n) +20*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Mar 21 2022

Extensions

a(15) corrected by Vincenzo Librandi, Jul 19 2011

A112701 Partial sum of Catalan numbers (A000108) multiplied by powers of 7.

Original entry on oeis.org

1, 8, 106, 1821, 35435, 741329, 16270997, 369570944, 8613236374, 204812473608, 4949266755812, 121188396669810, 3000342229924222, 74979188061284522, 1888846103011564082, 47915719069874907917, 1222954711282739097587
Offset: 0

Views

Author

Wolfdieter Lang, Oct 31 2005

Keywords

Crossrefs

Column m=7 of triangle A112705.
Partial sums of A156266.

Programs

  • Maple
    f:= gfun:-rectoproc({(n+1)*a(n) +(-29*n+13)*a(n-1) +14*(2*n-1)*a(n-2)=0,a(0)=1,a(1)=8},a(n),remember):
    map(f, [$0..50]); # Robert Israel, Aug 04 2020
  • Mathematica
    CatalanNumber[#]*7^#& /@ Range[0, 20] // Accumulate (* Jean-François Alcover, Aug 29 2022 *)

Formula

a(n) = Sum_{k=0..n} A000108(k)*7^k.
G.f.: c(7*x)/(1-x), where c(x) = (1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
Conjecture: (n+1)*a(n) +(-29*n+13)*a(n-1) +14*(2*n-1)*a(n-2)=0. - R. J. Mathar, Jun 08 2016
Conjecture verified using the d.e. (28*x^3-29*x^2+x)*y' + (42*x^2-16*x+1)*y=1 satisfied by the g.f. - Robert Israel, Aug 04 2020
a(n) = 7^n*binomial(2*n, n)*(1 - hypergeom([1, n+1/2], [n+2], 28))/(n+1) + (1 - 3*sqrt(3)*i)/14, where i denotes the imaginary units. - Stefano Spezia, Mar 31 2025
Showing 1-7 of 7 results.