A085880
Triangle T(n,k) read by rows: multiply row n of Pascal's triangle (A007318) by the n-th Catalan number (A000108).
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 14, 56, 84, 56, 14, 42, 210, 420, 420, 210, 42, 132, 792, 1980, 2640, 1980, 792, 132, 429, 3003, 9009, 15015, 15015, 9009, 3003, 429, 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430, 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862
Offset: 0
Triangle starts:
[ 1] 1;
[ 2] 1, 1;
[ 3] 2, 4, 2;
[ 4] 5, 15, 15, 5;
[ 5] 14, 56, 84, 56, 14;
[ 6] 42, 210, 420, 420, 210, 42;
[ 7] 132, 792, 1980, 2640, 1980, 792, 132;
[ 8] 429, 3003, 9009, 15015, 15015, 9009, 3003, 429;
[ 9] 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430;
[10] 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862;
...
-
Flat(List([0..10], n-> List([0..n], k-> Binomial(n,k)*Binomial(2*n,n)/( n+1) ))); # G. C. Greubel, Feb 07 2020
-
[Binomial(n,k)*Catalan(n): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 07 2020
-
seq(seq(binomial(n, k)*binomial(2*n, n)/(n+1), k = 0..n), n = 0..10); # G. C. Greubel, Feb 07 2020
-
Table[Binomial[n, k]*CatalanNumber[n], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2020 *)
-
tabl(nn) = {for (n=0, nn, c = binomial(2*n,n)/(n+1); for (k=0, n, print1(c*binomial(n, k), ", ");); print(););} \\ Michel Marcus, Apr 09 2015
-
[[binomial(n,k)*catalan_number(n) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 07 2020
A290605
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 2/(1 + sqrt(1 - 4*k*x)).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 40, 14, 0, 1, 5, 32, 135, 224, 42, 0, 1, 6, 50, 320, 1134, 1344, 132, 0, 1, 7, 72, 625, 3584, 10206, 8448, 429, 0, 1, 8, 98, 1080, 8750, 43008, 96228, 54912, 1430, 0, 1, 9, 128, 1715, 18144, 131250, 540672, 938223, 366080, 4862, 0
Offset: 0
G.f. of column k: A(x) = 1 + k*x + 2*k^2*x^2 + 5*k^3*x^3 + 14*k^4*x^4 + 42*k^5*x^5 + 132*k^6*x^6 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 8, 18, 32, 50, ...
0, 5, 40, 135, 320, 625, ...
0, 14, 224, 1134, 3584, 8750, ...
0, 42, 1344, 10206, 43008, 131250, ...
Columns k=0-10 give:
A000007,
A000108,
A151374,
A005159,
A151403,
A156058,
A156128,
A156266,
A156270,
A156273,
A156275.
-
ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
A:= proc(n, k) option remember; k^n*ctln(n) end:
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Oct 28 2019
-
Table[Function[k, SeriesCoefficient[2/(1 + Sqrt[1 - 4 k x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
A156270
a(n) = 8^n*Catalan(n).
Original entry on oeis.org
1, 8, 128, 2560, 57344, 1376256, 34603008, 899678208, 23991418880, 652566593536, 18034567675904, 504967894925312, 14294475794808832, 408413594137395200, 11762311511156981760, 341107033823552471040, 9952299339793060331520
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Brigitte Chauvin, Philippe Flajolet, Daniele Gardy and Bernhard Gittenberger, And/Or Tree Revisited, Combinat., Probal. Comput., Vol. 13, No. 4-5 (2004), pp. 475-497.
A156273
a(n) = 9^n*Catalan(n).
Original entry on oeis.org
1, 9, 162, 3645, 91854, 2480058, 70150212, 2051893701, 61556811030, 1883638417518, 58564030799196, 1844766970174674, 58748732742485772, 1888352123865614100, 61182608813245896840, 1996082612532147384405, 65518476340761072970470, 2162109719245115408025510
Offset: 0
A156362
a(2*n+2) = 8*a(2*n+1), a(2*n+1) = 8*a(2*n) - 7^n*A000108(n), a(0)=1.
Original entry on oeis.org
1, 7, 56, 441, 3528, 28126, 225008, 1798349, 14386792, 115060722, 920485776, 7363180314, 58905442512, 471228010428, 3769824083424, 30158239367445, 241265914939560, 1930119075851050, 15440952606808400, 123527424655229966
Offset: 0
-
[n le 3 select Factorial(n+5)/720 else (8*n*Self(n-1) + 28*(n-3)*Self(n-2) - 224*(n-3)*Self(n-3))/n: n in [1..30]]; // G. C. Greubel, Nov 09 2022
-
a[n_]:= a[n]= If[n==0, 1, If[OddQ[n], 8*a[n-1] -7^((n-1)/2)*CatalanNumber[(n-1)/2], 8*a[n-1]]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Nov 09 2022 *)
-
def a(n): # a = A156362
if (n==0): return 1
elif (n%2==1): return 8*a(n-1) - 7^((n-1)/2)*catalan_number((n-1)/2)
else: return 8*a(n-1)
[a(n) for n in (0..30)] # G. C. Greubel, Nov 09 2022
A156275
a(n) = 10^n*Catalan(n).
Original entry on oeis.org
1, 10, 200, 5000, 140000, 4200000, 132000000, 4290000000, 143000000000, 4862000000000, 167960000000000, 5878600000000000, 208012000000000000, 7429000000000000000, 267444000000000000000, 9694845000000000000000, 353576700000000000000000
Offset: 0
A112701
Partial sum of Catalan numbers (A000108) multiplied by powers of 7.
Original entry on oeis.org
1, 8, 106, 1821, 35435, 741329, 16270997, 369570944, 8613236374, 204812473608, 4949266755812, 121188396669810, 3000342229924222, 74979188061284522, 1888846103011564082, 47915719069874907917, 1222954711282739097587
Offset: 0
-
f:= gfun:-rectoproc({(n+1)*a(n) +(-29*n+13)*a(n-1) +14*(2*n-1)*a(n-2)=0,a(0)=1,a(1)=8},a(n),remember):
map(f, [$0..50]); # Robert Israel, Aug 04 2020
-
CatalanNumber[#]*7^#& /@ Range[0, 20] // Accumulate (* Jean-François Alcover, Aug 29 2022 *)
Showing 1-7 of 7 results.
Comments