A085880
Triangle T(n,k) read by rows: multiply row n of Pascal's triangle (A007318) by the n-th Catalan number (A000108).
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 14, 56, 84, 56, 14, 42, 210, 420, 420, 210, 42, 132, 792, 1980, 2640, 1980, 792, 132, 429, 3003, 9009, 15015, 15015, 9009, 3003, 429, 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430, 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862
Offset: 0
Triangle starts:
[ 1] 1;
[ 2] 1, 1;
[ 3] 2, 4, 2;
[ 4] 5, 15, 15, 5;
[ 5] 14, 56, 84, 56, 14;
[ 6] 42, 210, 420, 420, 210, 42;
[ 7] 132, 792, 1980, 2640, 1980, 792, 132;
[ 8] 429, 3003, 9009, 15015, 15015, 9009, 3003, 429;
[ 9] 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430;
[10] 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862;
...
-
Flat(List([0..10], n-> List([0..n], k-> Binomial(n,k)*Binomial(2*n,n)/( n+1) ))); # G. C. Greubel, Feb 07 2020
-
[Binomial(n,k)*Catalan(n): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 07 2020
-
seq(seq(binomial(n, k)*binomial(2*n, n)/(n+1), k = 0..n), n = 0..10); # G. C. Greubel, Feb 07 2020
-
Table[Binomial[n, k]*CatalanNumber[n], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2020 *)
-
tabl(nn) = {for (n=0, nn, c = binomial(2*n,n)/(n+1); for (k=0, n, print1(c*binomial(n, k), ", ");); print(););} \\ Michel Marcus, Apr 09 2015
-
[[binomial(n,k)*catalan_number(n) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 07 2020
A290605
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 2/(1 + sqrt(1 - 4*k*x)).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 40, 14, 0, 1, 5, 32, 135, 224, 42, 0, 1, 6, 50, 320, 1134, 1344, 132, 0, 1, 7, 72, 625, 3584, 10206, 8448, 429, 0, 1, 8, 98, 1080, 8750, 43008, 96228, 54912, 1430, 0, 1, 9, 128, 1715, 18144, 131250, 540672, 938223, 366080, 4862, 0
Offset: 0
G.f. of column k: A(x) = 1 + k*x + 2*k^2*x^2 + 5*k^3*x^3 + 14*k^4*x^4 + 42*k^5*x^5 + 132*k^6*x^6 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 8, 18, 32, 50, ...
0, 5, 40, 135, 320, 625, ...
0, 14, 224, 1134, 3584, 8750, ...
0, 42, 1344, 10206, 43008, 131250, ...
Columns k=0-10 give:
A000007,
A000108,
A151374,
A005159,
A151403,
A156058,
A156128,
A156266,
A156270,
A156273,
A156275.
-
ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
A:= proc(n, k) option remember; k^n*ctln(n) end:
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Oct 28 2019
-
Table[Function[k, SeriesCoefficient[2/(1 + Sqrt[1 - 4 k x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
A156273
a(n) = 9^n*Catalan(n).
Original entry on oeis.org
1, 9, 162, 3645, 91854, 2480058, 70150212, 2051893701, 61556811030, 1883638417518, 58564030799196, 1844766970174674, 58748732742485772, 1888352123865614100, 61182608813245896840, 1996082612532147384405, 65518476340761072970470, 2162109719245115408025510
Offset: 0
A156275
a(n) = 10^n*Catalan(n).
Original entry on oeis.org
1, 10, 200, 5000, 140000, 4200000, 132000000, 4290000000, 143000000000, 4862000000000, 167960000000000, 5878600000000000, 208012000000000000, 7429000000000000000, 267444000000000000000, 9694845000000000000000, 353576700000000000000000
Offset: 0
A156566
a(2n+2) = 9*a(2n+1), a(2n+1) = 9*a(2n) - 8^n*A000108(n), a(0)=1.
Original entry on oeis.org
1, 8, 72, 640, 5760, 51712, 465408, 4186112, 37675008, 339017728, 3051159552, 27459059712, 247131537408, 2224149233664, 20017343102976, 180155188248576, 1621396694237184, 14592546256715776, 131332916310441984
Offset: 0
-
a[0] = 1; a[1] = 8; a[2] = 72; a[n_] := a[n] = (-288*(n-2)*a[n-3] + 32*(n-2)*a[n-2] + 9*(n+1)*a[n-1])/(n+1); Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Nov 15 2016 *)
a[n_]:= a[n]= If[n==0, 1, If[OddQ[n], 9*a[n-1] - 8^((n-1)/2)*CatalanNumber[(n- 1)/2], 9*a[n-1]]]; Table[a[n], {n,0,30}] (* G. C. Greubel, May 18 2022 *)
-
def a(n): # a = A156566
if (n==0): return 1
elif (n%2==1): return 9*a(n-1) - 8^((n-1)/2)*catalan_number((n-1)/2)
else: return 9*a(n-1)
[a(n) for n in (0..30)] # G. C. Greubel, May 18 2022
Showing 1-5 of 5 results.
Comments