A052709
Expansion of g.f. (1-sqrt(1-4*x-4*x^2))/(2*(1+x)).
Original entry on oeis.org
0, 1, 1, 3, 9, 31, 113, 431, 1697, 6847, 28161, 117631, 497665, 2128127, 9183489, 39940863, 174897665, 770452479, 3411959809, 15181264895, 67833868289, 304256253951, 1369404661761, 6182858317823, 27995941060609, 127100310290431, 578433619525633, 2638370120138751
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- N. J. A. Sloane, Table of n, a(n) for n = 0..499
- Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, Ascending runs in permutations and valued Dyck paths, Ars Mathematica Contemporanea (2019) Vol. 16, No. 2, 445-463.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Daniel Birmajer, Juan B. Gil, David S. Kenepp, and Michael D. Weiner, Restricted generating trees for weak orderings, arXiv:2108.04302 [math.CO], 2021.
- Daniel Birmajer, Juan B. Gil, Peter R. W. McNamara, and Michael D. Weiner, Enumeration of colored Dyck paths via partial Bell polynomials, arXiv:1602.03550 [math.CO], 2016.
- Xiang-Ke Chang, X.-B. Hu, H. Lei, and Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- Brian Drake, Limits of areas under lattice paths, Discrete Math. 309 (2009), no. 12, 3936-3953.
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv preprint arXiv:1410.5747 [math.CO], 2014.
- James East and Nicholas Ham, Lattice paths and submonoids of Z^2, arXiv:1811.05735 [math.CO], 2018.
- L. Ferrari, E. Pergola, R. Pinzani, and S. Rinaldi, Jumping succession rules and their generating functions, Discrete Math., 271 (2003), 29-50.
- Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 664
- J. P. S. Kung and A. de Mier, Catalan lattice paths with rook, bishop and spider steps, Journal of Combinatorial Theory, Series A 120 (2013) 379-389. - _N. J. A. Sloane_, Dec 27 2012
- D. Merlini, D. G. Rogers, R. Sprugnoli, and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad. J. Math., 49 (1997), 301-320.
-
[0] cat [(&+[Binomial(n,k+1)*Binomial(2*k,n-1): k in [0..n-1]])/n: n in [1..30]]; // G. C. Greubel, May 30 2022
-
spec := [S,{C=Prod(B,Z),S=Union(B,C,Z),B=Prod(S,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
InverseSeries[Series[(y-y^2)/(1+y^2), {y, 0, 24}], x] (* then A(x)= y(x) *) (* Len Smiley, Apr 12 2000 *)
CoefficientList[Series[(1 -Sqrt[1 -4x -4x^2])/(2(1+x)), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 12 2016 *)
-
a(n)=polcoeff((1-sqrt(1-4*x*(1+x+O(x^n))))/2/(1+x),n)
-
[sum(binomial(k, n-k-1)*catalan_number(k) for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, May 30 2022
More terms from Larry Reeves (larryr(AT)acm.org), Oct 03 2000
A151374
Number of walks within N^2 (the first quadrant of Z^2) starting at (0, 0), ending on the vertical axis and consisting of 2n steps taken from {(-1, -1), (-1, 0), (1, 1)}.
Original entry on oeis.org
1, 2, 8, 40, 224, 1344, 8448, 54912, 366080, 2489344, 17199104, 120393728, 852017152, 6085836800, 43818024960, 317680680960, 2317200261120, 16992801914880, 125210119372800, 926554883358720, 6882979133521920, 51309480813527040, 383705682605506560, 2877792619541299200
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Paul Barry, Generalized Eulerian Triangles and Some Special Production Matrices, arXiv:1803.10297 [math.CO], 2018.
- Paul Barry, Riordan arrays, the A-matrix, and Somos 4 sequences, arXiv:1912.01126 [math.CO], 2019.
- Mireille Bousquet-Mélou and Marni Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
- J. Bouttier, P. Di Francesco and E. Guitter, Statistics of planar graphs viewed from a vertex: a study via labeled trees, Nucl. Phys. B, Vol. 675, No. 3 (2003), pp. 631-660. See p. 631, eq. (3.3).
- Marek Bożejko, Maciej Dołęga, Wiktor Ejsmont and Światosław R. Gal, Reflection length with two parameters in the asymptotic representation theory of type B/C and applications, arXiv:2104.14530 [math.RT], 2021.
- Vedran Čačić and Vjekoslav Kovač, On the fraction of IL formulas that have normal forms, arXiv:1309.3408 [math.LO], 2013.
- Stefano Capparelli and Alberto Del Fra, Dyck Paths, Motzkin Paths, and the Binomial Transform, Journal of Integer Sequences, Vol. 18 (2015), Article 15.8.5.
- Grégory Chatel and Vincent Pilaud, Cambrian Hopf algebras, Adv. Math. 311, 598-633 (2017). Prop. 3.
- Zhi Chen and Hao Pan, Identities involving weighted Catalan-Schröder and Motzkin Paths, arXiv:1608.02448 [math.CO], 2016. See eq. (1.13), a=b=2.
- Nicolas Crampe, Julien Gaboriaud and Luc Vinet, Racah algebras, the centralizer Z_n(sl_2) and its Hilbert-Poincaré series, arXiv:2105.01086 [math.RT], 2021.
- Hsien-Kuei Hwang, Mihyun Kang and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- Bradley Robert Jones, On tree hook length formulas, Feynman rules and B-series, Master's thesis, Simon Fraser University, 2014.
- Georg Muntingh, Implicit Divided Differences, Little Schröder Numbers and Catalan Numbers, J. Int. Seq., Vol. 15 (2012), Article 12.6.5; arXiv preprint, arXiv:1204.2709 [math.CO], 2012.
- L. Poulain d'Andecy, Centralisers and Hecke algebras in Representation Theory, with applications to Knots and Physics, arXiv:2304.00850 [math.RT], 2023. See p. 64.
-
[2^n * Catalan(n): n in [0..25]]; // Vincenzo Librandi, Oct 24 2012
-
A151374_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 2*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od;
convert(a,list)end: A151374_list(23); # Peter Luschny, May 19 2011
-
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, 2 n], {k, 0, 2 n}], {n, 0, 25}]
-
my(x='x+O('x^66)); Vec(sqrt(2-8*x-2*sqrt(1-8*x))/(4*x)) \\ Joerg Arndt, May 11 2013
-
def A151374():
a, n = 1, 1
while True:
yield a
n += 1
a = a * (8*n - 12) // n
A = A151374()
print([next(A) for in range(24)]) # _Peter Luschny, Nov 30 2016
A005159
a(n) = 3^n*Catalan(n).
Original entry on oeis.org
1, 3, 18, 135, 1134, 10206, 96228, 938223, 9382230, 95698746, 991787004, 10413763542, 110546105292, 1184422556700, 12791763612360, 139110429284415, 1522031755700070, 16742349312700770, 185047018719324300, 2054021907784499730
Offset: 0
- Leonid M. Koganov, Valery A. Liskovets and Timothy R. S. Walsh, Total vertex enumeration in rooted planar maps, Ars Combin., Vol. 54 (2000), pp. 149-160.
- Valery A. Liskovets and Timothy R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
- Richard P. Stanley, Catalan Numbers, Cambridge, 2015, p. 107.
- T. D. Noe, Table of n, a(n) for n = 0..100
- Mireille Bousquet-Mélou, Limit laws for embedded trees, arXiv:math/0501266 [math.CO], 2005.
- J. Bouttier, P. Di Francesco and E. Guitter, Statistics of planar graphs viewed from a vertex: a study via labeled trees, Nucl. Phys. B, Vol. 675, No. 3 (2003), pp. 631-660. See p. 631, eq. (3.3).
- Zhi Chen and Hao Pan, Identities involving weighted Catalan-Schroder and Motzkin Paths, arXiv:1608.02448 [math.CO], 2016. See eq. (1.13), a=b=3.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Gerard 't Hooft, Counting planar diagrams with various restrictions, Nucl. Phys. B, Vol. 538, No. 1-2 (1999), pp. 389-410; arXiv:hep preprint arXiv:hep-th/9808113, 1998.
- Hsien-Kuei Hwang, Mihyun Kang and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- Sergey Kitaev, Anna de Mier and Marc Noy, On the number of self-dual rooted maps, European J. Combin., Vol. 35 (2014), pp. 377-387. MR3090510.
- Valery A. Liskovets, A pattern of asymptotic vertex valency distributions in planar maps, J. Combin. Th. B, Vol. 75, No. 1 (1999), pp. 116-133.
- Valery A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., Vol. 36, No. 4 (2006), pp. 364-387.
- Thomas M. Richardson, The three 'R's and Dual Riordan Arrays, arXiv:1609.01193 [math.CO], 2016.
- Gilles Schaeffer and Paul Zinn-Justin, On the asymptotic number of plane curves and alternating knots, arXiv:math-ph/0304034, 2003-2004.
- Simeon T. Stefanov, Counting fixed points free vector fields on B^2, arXiv:1807.03714 [math.GT], 2018.
- Volkan Yildiz, Counting with 3-valued truth tables of bracketed formulae connected by implication, arXiv:2010.10303 [math.GM], 2020.
-
List([0..20],n->3^n*Binomial(2*n,n)/(n+1)); # Muniru A Asiru, Mar 30 2018
-
[3^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Oct 16 2018
-
A005159_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 3*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od;convert(a,list)end: A005159_list(19); # Peter Luschny, May 19 2011
-
InverseSeries[Series[y-3*y^2, {y, 0, 24}], x] (* then A(x)=y(x)/x *) (* Len Smiley, Apr 07 2000 *)
Table[3^n CatalanNumber[n],{n,0,30}] (* Harvey P. Dale, May 18 2011 *)
CoefficientList[Series[(1 - Sqrt[1-4*(3*x)])/(6*x), {x, 0, 50}], x] (* Stefano Spezia, Oct 16 2018 *)
-
a(n) = 3^n*binomial(2*n,n)/(n+1) \\ Charles R Greathouse IV, Feb 06 2017
A151403
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of 2*n steps taken from {(-1, 0), (-1, 1), (1, 0), (1, 1)}.
Original entry on oeis.org
1, 4, 32, 320, 3584, 43008, 540672, 7028736, 93716480, 1274544128, 17611882496, 246566354944, 3489862254592, 49855175065600, 717914520944640, 10409760553697280, 151860036312760320, 2227280532587151360, 32823081532863283200, 485781606686376591360, 7217326727911880785920
Offset: 0
- Richard P. Stanley, Catalan Numbers, Cambridge, 2015, p. 106.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Mireille Bousquet-Mélou and Marni Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
- Alon Regev, Enumerating Triangulations by Parallel Diagonals, Journal of Integer Sequences, Vol. 15 (2012), Article 12.8.5; arXiv preprint, arXiv:1208.3915 [math.CO], 2012.
-
[4^n * Catalan(n): n in [0..20]]; // Vincenzo Librandi, Oct 24 2012
-
A151403_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 4*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od; convert(a,list) end: A151403_list(20); # Peter Luschny, May 19 2011
seq(4^n*(2*n)!*coeff(series(hypergeom([],[2],x^2),x,2*n+2),x,2*n),n=0..20); # Peter Luschny, Jan 31 2015
-
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[0, k, 2 n], {k, 0, 2 n}], {n, 0, 25}]
-
A151403 = lambda n: 4^n*hypergeometric([1-n,-n],[2],1)
[Integer(A151403(n).n()) for n in range(21)] # Peter Luschny, Sep 22 2014
A052701
a(0) = 0; for n >= 1, a(n) = 2^(n-1)*C(n-1), where C(n) = A000108(n) Catalan numbers, n>0.
Original entry on oeis.org
0, 1, 2, 8, 40, 224, 1344, 8448, 54912, 366080, 2489344, 17199104, 120393728, 852017152, 6085836800, 43818024960, 317680680960, 2317200261120, 16992801914880, 125210119372800, 926554883358720, 6882979133521920
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril, Sergey Kirgizov, and Mehdi Naima, A lattice on Dyck paths close to the Tamari lattice, arXiv:2309.00426 [math.CO], 2023.
- M. Bousquet-Mélou, Limit laws for embedded trees, arXiv:math/0501266 [math.CO], 2005.
- Marek Bożejko, Maciej Dołęga, Wiktor Ejsmont, and Światosław R. Gal, Reflection length with two parameters in the asymptotic representation theory of type B/C and applications, arXiv:2104.14530 [math.RT], 2021.
- F. Chapoton and S. Giraudo, Enveloping operads and bicoloured noncrossing configurations, arXiv:1310.4521 [math.CO], 2013.
- Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics, Vol. 24, No. 2 (2017), Article P2.3.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 651.
- V. A. Liskovets and T. R. Walsh, Counting unrooted maps on the plane, Advances in Applied Math., Vol. 36, No.4 (2006), pp. 364-387.
- Vincent Pilaud and V. Pons, Permutrees, arXiv preprint arXiv:1606.09643 [math.CO], 2016-2017.
- Index to sequences related to reversion of series.
-
spec := [S,{B=Union(C,Z),S=Union(B,C),C=Prod(S,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
InverseSeries[Series[y-2*y^2, {y, 0, 24}], x] (* then A(x)=y(x) *) (* Len Smiley, Apr 07 2000 *)
Join[{0},Table[2^n CatalanNumber[n],{n,0,30}]] (* Harvey P. Dale, Aug 29 2015 *)
-
a(n)=if(n<1,0,2^(n-1)*(2*n-2)!/(n-1)!/n!)
-
a(n)=if(n<1,0,polcoeff(serreverse(x-2*x^2+x*O(x^n)),n))
-
a(n)=if(n<1,0,polcoeff(2*x/(1+sqrt(1-8*x+O(x^n))),n))
Better description from Claude Lenormand (claude.lenormand(AT)free.fr), Mar 19 2001
A156058
a(n) = 5^n * Catalan(n).
Original entry on oeis.org
1, 5, 50, 625, 8750, 131250, 2062500, 33515625, 558593750, 9496093750, 164023437500, 2870410156250, 50784179687500, 906860351562500, 16323486328125000, 295863189697265625, 5395152282714843750, 98911125183105468750, 1822047042846679687500
Offset: 0
-
[5^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
-
A156058_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 5*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od; convert(a,list)end: A156058_list(16); # Peter Luschny, May 19 2011
A156058 := proc(n)
5^n*A000108(n) ;
end proc: # R. J. Mathar, Oct 06 2012
-
Table[5^n CatalanNumber[n],{n,0,20}] (* Harvey P. Dale, Mar 13 2011 *)
A156128
a(n) = 6^n * Catalan(n).
Original entry on oeis.org
1, 6, 72, 1080, 18144, 326592, 6158592, 120092544, 2401850880, 48997757952, 1015589892096, 21327387734016, 452796847276032, 9702789584486400, 209580255024906240, 4558370546791710720, 99747873141559787520, 2194453209114315325440, 48508965675158549299200
Offset: 0
-
[6^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
-
A156128_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 6*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od;convert(a,list)end: A156128_list(16); # Peter Luschny, May 19 2011
-
Table[CatalanNumber[n]6^n, {n, 0, 16}] (* Alonso del Arte, Jul 19 2011 *)
A156266
a(n) = 7^n*Catalan(n).
Original entry on oeis.org
1, 7, 98, 1715, 33614, 705894, 15529668, 353299947, 8243665430, 196199237234, 4744454282204, 116239129913998, 2879153833254412, 71978845831360300, 1813866914950279560, 46026872966863343835, 1175038992212864189670
Offset: 0
-
[7^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
-
A156266_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 7*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od;convert(a,list)end: A156266_list(16); # Peter Luschny, May 19 2011
-
Table[7^n * CatalanNumber[n], {n, 0, 16}] (* Amiram Eldar, Jan 25 2022 *)
A156270
a(n) = 8^n*Catalan(n).
Original entry on oeis.org
1, 8, 128, 2560, 57344, 1376256, 34603008, 899678208, 23991418880, 652566593536, 18034567675904, 504967894925312, 14294475794808832, 408413594137395200, 11762311511156981760, 341107033823552471040, 9952299339793060331520
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Brigitte Chauvin, Philippe Flajolet, Daniele Gardy and Bernhard Gittenberger, And/Or Tree Revisited, Combinat., Probal. Comput., Vol. 13, No. 4-5 (2004), pp. 475-497.
A156273
a(n) = 9^n*Catalan(n).
Original entry on oeis.org
1, 9, 162, 3645, 91854, 2480058, 70150212, 2051893701, 61556811030, 1883638417518, 58564030799196, 1844766970174674, 58748732742485772, 1888352123865614100, 61182608813245896840, 1996082612532147384405, 65518476340761072970470, 2162109719245115408025510
Offset: 0
Showing 1-10 of 12 results.
Comments