A238357
Number of genus-7 rooted maps with n edges.
Original entry on oeis.org
14230536445125, 3128879373858000, 360626952084151500, 29001816720933903504, 1828003659229082834100, 96187365300257285300064, 4395215998078319892167640, 179153431308203084149883760, 6641365771586560905099092466, 227189907562197156785567456832, 7252879937219595844346639732688
Offset: 14
Rooted maps with n edges of genus g for 0 <= g <= 10:
A000168,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356, this sequence,
A238358,
A238359,
A238360.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 7];
Table[a[n], {n, 14, 30}] (* Jean-François Alcover, Jul 20 2018 *)
-
\\ see A238396
-
system("wget http://oeis.org/A238357/a238357.txt");
A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
A238357_ser(N) = subst(read("a238357.txt"), 'y, A005159_ser(N+14));
Vec(A238357_ser(11)) \\ Gheorghe Coserea, Jun 03 2017
A238358
Number of genus-8 rooted maps with n edges.
Original entry on oeis.org
11288163762500625, 2927974178219879250, 394372363395179602125, 36751560969705187643982, 2663973075006196131775590, 160098273686603663417293308, 8303278159618015743881266599, 381958851175370643701603049354, 15896435050196091382215375181044, 607566907750822335161584110201960
Offset: 16
Rooted maps with n edges of genus g for 0 <= g <= 10:
A000168,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357, this sequence,
A238359,
A238360.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 8];
Table[a[n], {n, 16, 30}] (* Jean-François Alcover, Jul 20 2018 *)
-
\\ see A238396
A053764
a(n) = 3^(n^2 - n).
Original entry on oeis.org
1, 1, 9, 729, 531441, 3486784401, 205891132094649, 109418989131512359209, 523347633027360537213511521, 22528399544939174411840147874772641, 8727963568087712425891397479476727340041449, 30432527221704537086371993251530170531786747066637049, 955004950796825236893190701774414011919935138974343129836853841, 269721605590607563262106870407286853611938890184108047911269431464974473521
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..46
- N. J. Fine and I. N. Herstein, The probability that a matrix be nilpotent, Illinois J. Math., 2 (1958), 499-504.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- M. Gerstenhaber, On the number of nilpotent matrices with coefficients in a finite field, Illinois J. Math., Vol. 5 (1961), 330-333.
A238359
Number of genus-9 rooted maps with n edges.
Original entry on oeis.org
11665426077721040625, 3498878057690404966500, 540996834819906946713375, 57494374008560749302297480, 4724172886681078698955547790, 320061005837218582787265273000, 18618409220753939214291224549409, 956146512935178711199035220384800, 44232688287025023758415781081779828, 1871678026675570344184400604255444240
Offset: 18
Rooted maps with n edges of genus g for 0 <= g <= 10:
A000168,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358, this sequence,
A238360.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 9];
Table[a[n], {n, 18, 30}] (* Jean-François Alcover, Jul 20 2018 *)
-
\\ see A238396
A238360
Number of genus-10 rooted maps with n edges.
Original entry on oeis.org
15230046989184655753125, 5199629454143883380553750, 909887917857275652461097750, 108861830345440643086946970900, 10021124647635764856828690342402, 757187906770815991999545249667404, 48918614114003431712044170834572688, 2779227352989564224315657269511192976, 141720718575991991799057452443438430580
Offset: 20
Rooted maps with n edges of genus g for 0 <= g <= 10:
A000168,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358,
A238359, this sequence.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 10];
Table[a[n], {n, 20, 30}] (* Jean-François Alcover, Jul 20 2018 *)
-
\\ see A238396
A085880
Triangle T(n,k) read by rows: multiply row n of Pascal's triangle (A007318) by the n-th Catalan number (A000108).
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 14, 56, 84, 56, 14, 42, 210, 420, 420, 210, 42, 132, 792, 1980, 2640, 1980, 792, 132, 429, 3003, 9009, 15015, 15015, 9009, 3003, 429, 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430, 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862
Offset: 0
Triangle starts:
[ 1] 1;
[ 2] 1, 1;
[ 3] 2, 4, 2;
[ 4] 5, 15, 15, 5;
[ 5] 14, 56, 84, 56, 14;
[ 6] 42, 210, 420, 420, 210, 42;
[ 7] 132, 792, 1980, 2640, 1980, 792, 132;
[ 8] 429, 3003, 9009, 15015, 15015, 9009, 3003, 429;
[ 9] 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430;
[10] 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862;
...
-
Flat(List([0..10], n-> List([0..n], k-> Binomial(n,k)*Binomial(2*n,n)/( n+1) ))); # G. C. Greubel, Feb 07 2020
-
[Binomial(n,k)*Catalan(n): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 07 2020
-
seq(seq(binomial(n, k)*binomial(2*n, n)/(n+1), k = 0..n), n = 0..10); # G. C. Greubel, Feb 07 2020
-
Table[Binomial[n, k]*CatalanNumber[n], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2020 *)
-
tabl(nn) = {for (n=0, nn, c = binomial(2*n,n)/(n+1); for (k=0, n, print1(c*binomial(n, k), ", ");); print(););} \\ Michel Marcus, Apr 09 2015
-
[[binomial(n,k)*catalan_number(n) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 07 2020
A107264
Expansion of (1 - 3*x - sqrt((1-3*x)^2 - 4*3*x^2))/(2*3*x^2).
Original entry on oeis.org
1, 3, 12, 54, 261, 1323, 6939, 37341, 205011, 1143801, 6466230, 36960300, 213243435, 1240219269, 7263473148, 42799541886, 253556163243, 1509356586897, 9023497273548, 54154973176074, 326154592965879, 1970575690572297
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group and Chebyshev polynomials, arXiv:2502.13673 [math.CO], 2025.
- N. Gabriel, K. Peske, L. Pudwell, and S. Tay, Pattern Avoidance in Ternary Trees, J. Int. Seq. 15 (2012) # 12.1.5.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- L. Pudwell, Pattern avoidance in trees, (slides from a talk, mentions many sequences), 2012. - From _N. J. A. Sloane_, Jan 03 2013
-
CoefficientList[Series[(1-3*x-Sqrt[1-6*x-3*x^2])/(6*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
A156058
a(n) = 5^n * Catalan(n).
Original entry on oeis.org
1, 5, 50, 625, 8750, 131250, 2062500, 33515625, 558593750, 9496093750, 164023437500, 2870410156250, 50784179687500, 906860351562500, 16323486328125000, 295863189697265625, 5395152282714843750, 98911125183105468750, 1822047042846679687500
Offset: 0
-
[5^n*Catalan(n): n in [0..20]]; // Vincenzo Librandi, Jul 19 2011
-
A156058_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 5*(a[w-1]+add(a[j]*a[w-j-1],j=1..w-1)) od; convert(a,list)end: A156058_list(16); # Peter Luschny, May 19 2011
A156058 := proc(n)
5^n*A000108(n) ;
end proc: # R. J. Mathar, Oct 06 2012
-
Table[5^n CatalanNumber[n],{n,0,20}] (* Harvey P. Dale, Mar 13 2011 *)
A151162
Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0)}.
Original entry on oeis.org
1, 3, 12, 45, 180, 702, 2808, 11097, 44388, 176418, 705672, 2812482, 11249928, 44903484, 179613936, 717517521, 2870070084, 11470898106, 45883592424, 183438670950, 733754683800, 2934026948196, 11736107792784, 46934017407594, 187736069630376, 750833732416212, 3003334929664848
Offset: 0
-
[n le 3 select Factorial(n+1)/2 else (4*n*Self(n-1) + 12*(n-3)*Self(n-2) - 48*(n-3)*Self(n-3))/n: n in [1..41]]; // G. C. Greubel, Nov 09 2022
-
aux[i_, j_, k_, n_]:= Which[Min[i, j, k, n]<0 || Max[i, j, k]>n, 0, n==0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n]= aux[-1+i, -1+j, k, -1+n] + aux[-1+i, j, -1+k, -1+n] + aux[-1+i, j, k, -1+n] + aux[1+i, j, k, -1+n]]; Table[Sum[aux[i,j,k,n], {i,0,n}, {j,0,n}, {k,0,n}], {n,0,30}]
a[n_]:= a[n]= If[n<3, (n+2)!/2, (4*(n+1)*a[n-1] +12*(n-2)*a[n-2] -48*(n-2)*a[n- 3])/(n+1)]; Table[a[n], {n,0,40}] (* G. C. Greubel, Nov 09 2022 *)
-
def a(n): # a = A151162
if (n==0): return 1
elif (n%2==1): return 4*a(n-1) - 3^((n-1)/2)*catalan_number((n-1)/2)
else: return 4*a(n-1)
[a(n) for n in (0..40)] # G. C. Greubel, Nov 09 2022
A290605
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 2/(1 + sqrt(1 - 4*k*x)).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 8, 5, 0, 1, 4, 18, 40, 14, 0, 1, 5, 32, 135, 224, 42, 0, 1, 6, 50, 320, 1134, 1344, 132, 0, 1, 7, 72, 625, 3584, 10206, 8448, 429, 0, 1, 8, 98, 1080, 8750, 43008, 96228, 54912, 1430, 0, 1, 9, 128, 1715, 18144, 131250, 540672, 938223, 366080, 4862, 0
Offset: 0
G.f. of column k: A(x) = 1 + k*x + 2*k^2*x^2 + 5*k^3*x^3 + 14*k^4*x^4 + 42*k^5*x^5 + 132*k^6*x^6 + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 8, 18, 32, 50, ...
0, 5, 40, 135, 320, 625, ...
0, 14, 224, 1134, 3584, 8750, ...
0, 42, 1344, 10206, 43008, 131250, ...
Columns k=0-10 give:
A000007,
A000108,
A151374,
A005159,
A151403,
A156058,
A156128,
A156266,
A156270,
A156273,
A156275.
-
ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
A:= proc(n, k) option remember; k^n*ctln(n) end:
seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Oct 28 2019
-
Table[Function[k, SeriesCoefficient[2/(1 + Sqrt[1 - 4 k x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Showing 1-10 of 30 results.
Comments