A000168
a(n) = 2*3^n*(2*n)!/(n!*(n+2)!).
Original entry on oeis.org
1, 2, 9, 54, 378, 2916, 24057, 208494, 1876446, 17399772, 165297834, 1602117468, 15792300756, 157923007560, 1598970451545, 16365932856990, 169114639522230, 1762352559231660, 18504701871932430, 195621134074714260, 2080697516976506220, 22254416920705240440, 239234981897581334730, 2583737804493878415084
Offset: 0
G.f. = 1 + 2*x + 9*x^2 + 54*x^3 + 378*x^4 + 2916*x^5 + 24057*x^6 + 208494*x^7 + ...
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 319, 353.
- E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 714.
- V. A. Liskovets, A census of nonisomorphic planar maps, in Algebraic Methods in Graph Theory, Vol. II, ed. L. Lovasz and V. T. Sos, North-Holland, 1981.
- V. A. Liskovets, Enumeration of nonisomorphic planar maps, Selecta Math. Sovietica, 4 (No. 4, 1985), 303-323.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..925 [Terms 0 to 100 computed by T. D. Noe; terms 101 to 925 by G. C. Greubel, Jan 15 2017]
- Marie Albenque and Dominique Poulalhon, A Generic Method for Bijections between Blossoming Trees and Planar Maps, Electron. J. Combin., 22 (2015), #P2.38.
- J.-L. Baril, R. Genestier, A. Giorgetti, and A. Petrossian, Rooted planar maps modulo some patterns, Preprint 2016.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, A family of Bell transformations, arXiv:1803.07727 [math.CO], 2018.
- Valentin Bonzom, Guillaume Chapuy, Maciej Dolega, Enumeration of non-oriented maps via integrability, Alg. Combin. 5 (6) (2022) p 1363-1390, A.1.
- M. Bousquet-Mélou, Limit laws for embedded trees, arXiv:math/0501266 [math.CO], 2005.
- M. Bousquet-Mélou and A. Jehanne, Polynomial equations with one catalytic variable, algebraic series and map enumeration, arXiv:math/0504018 [math.CO], 2005.
- Sean R. Carrell and Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
- R. Cori and B. Vauquelin, Planar maps are well labeled trees, Canad. J. Math., 33 (1981), 1023-1042.
- S. R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 22 Aug 2024.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 516
- A. Giorgetti, R. Genestier, and V. Senni, Software Engineering and Enumerative Combinatorics, slides from a talk at MAP 2014.
- Hsien-Kuei Hwang, Mihyun Kang, and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- C. Kassel, On combinatorial zeta functions, Slides from a talk, Potsdam, 2015.
- Sergey Kitaev, Anna de Mier, and Marc Noy, On the number of self-dual rooted maps, European J. Combin. 35 (2014), 377--387. MR3090510. See Eq. (1). - _N. J. A. Sloane_, May 19 2014
- Evgeniy Krasko and Alexander Omelchenko, Enumeration of r-regular maps on the torus. Part I: Rooted maps on the torus, the projective plane and the Klein bottle. Sensed maps on the torus, Discrete Mathematics (2019) Vol. 342, Issue 2, 584-599. Also arXiv:1709.03225 [math.CO].
- V. A. Liskovets, Enumeration of nonisomorphic planar maps, Journal of Graph Theory, Volume 5, Issue 1, pages 115-117, Spring 1981.
- Valery A. Liskovets, A reductive technique for enumerating non-isomorphic planar maps, Discrete Math. 156 (1996), no. 1-3, 197--217. MR1405018 (97f:05087) - From _N. J. A. Sloane_, Jun 03 2012
- R. C. Mullin, On the average activity of a spanning tree of a rooted map, J. Combin. Theory, 3 (1967), 103-121.
- R. C. Mullin, On the average activity of a spanning tree of a rooted map, J. Combin. Theory, 3 (1967), 103-121. [Annotated scanned copy]
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, Une méthode pour obtenir la fonction génératrice d'une série, arXiv:0912.0072 [math.NT], 2009; FPSAC 1993, Florence. Formal Power Series and Algebraic Combinatorics.
- C. Reutenauer and M. Robado, On an algebraicity theorem of Kontsevich, FPSAC 2012, Nagoya, Japan DMTCS proc. AR, 2012, 241-248. - From _N. J. A. Sloane_, Dec 23 2012
- G. Schaeffer and P. Zinn-Justin, On the asymptotic number of plane curves and alternating knots, arXiv:math-ph/0304034, 2003-2004.
- W. T. Tutte, A Census of Planar Maps, Canad. J. Math. 15 (1963), 249-271.
- Noam Zeilberger, Counting isomorphism classes of beta-normal linear lambda terms, arXiv:1509.07596 [cs.LO], 2015.
- Noam Zeilberger, Towards a mathematical science of programming, Preprint 2015.
- Noam Zeilberger, Linear lambda terms as invariants of rooted trivalent maps, arXiv preprint arXiv:1512.06751 [cs.LO], 2015.
- Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
- Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv preprint 1803.10030, March 2018 (A revised version of a 2017 conference paper)
- Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Part 2, Rutgers Experimental Math Seminar, Sep 13 2018.
- Noam Zeilberger and Alain Giorgetti, A correspondence between rooted planar maps and normal planar lambda terms, arXiv:1408.5028 [cs.LO], 2014-2015; Logical Methods in Computer Science, vol. 11 (3:22), 2015, pp. 1-39.
- Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018.
Rooted maps with n edges of genus g for 0 <= g <= 10: this sequence,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358,
A238359,
A238360.
-
[(2*Catalan(n)*3^n)/(n+2): n in [1..30]]; // Vincenzo Librandi, Sep 04 2014
-
A000168:=n->2*3^n*(2*n)!/(n!*(n+2)!);
-
Table[(2*3^n*(2n)!)/(n!(n+2)!),{n,0,20}] (* Harvey P. Dale, Jul 25 2011 *)
a[ n_] := If[ n < 0, 0, 2 3^n (2 n)!/(n! (n + 2)!)] (* Michael Somos, Nov 25 2013 *)
a[ n_] := SeriesCoefficient[ Hypergeometric2F1[ 1/2, 1, 3, 12 x], {x, 0, n}] (* Michael Somos, Nov 25 2013 *)
-
{a(n) = if( n<0, 0, 2 * 3^n * (2*n)! / (n! * (n+2)!))}; /* Michael Somos, Nov 25 2013 */
A006300
Number of rooted maps with n edges on torus.
Original entry on oeis.org
1, 20, 307, 4280, 56914, 736568, 9370183, 117822512, 1469283166, 18210135416, 224636864830, 2760899996816, 33833099832484, 413610917006000, 5046403030066927, 61468359153954656, 747672504476150374, 9083423595292949240, 110239596847544663002, 1336700736225591436496, 16195256987701502444284
Offset: 2
- E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
- T. D. Noe, Table of n, a(n) for n = 2..100
- D. Arquès, Relations fonctionnelles et dénombrement des cartes pointées sur le tore, J. Combin. Theory Ser. B, 43 (1987), 253-274.
- E. A. Bender, E. R. Canfield and R. W. Robinson, The enumeration of maps on the torus and the projective plane, Canad. Math. Bull., 31 (1988), 257-271.
- Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], (19-March-2014).
- S. R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 22 Aug 2024.
- A. D. Mednykh and R. Nedela, Enumeration of unrooted maps with given genus, preprint (submitted to J. Combin. Th. B).
- A. D. Mednykh and R. Nedela, Enumeration of unrooted maps with given genus, Discrete Mathematics, Volume 310, Issue 3, 6 February 2010, pp. 518-526.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218.
- T. R. S. Walsh, Counting maps on doughnuts, Theoretical Computer Science, vol. 502, pp. 4-15, (September-2013).
Rooted maps with n edges of genus g for 0 <= g <= 10:
A000168, this sequence,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358,
A238359,
A238360.
-
R:=sqrt(1-12*x): seq(coeff(convert(series((R-1)^2/(12*R^2*(R+2)),x,50),polynom),x,n),n=2..25); (Pab Ter)
-
Drop[With[{c=Sqrt[1-12x]},CoefficientList[Series[(c-1)^2/(12c^2 (c+2)), {x,0,30}],x]],2] (* Harvey P. Dale, Jun 14 2011 *)
-
A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
A006300_ser(N) = my(y = A005159_ser(N+1)); y*(y-1)^2/(3*(y-2)^2*(y+2));
Vec(A006300_ser(21)) \\ Gheorghe Coserea, Jun 02 2017
Bender et al. give 20 terms.
More terms from Pab Ter (pabrlos2(AT)yahoo.com), Nov 07 2005
A269919
Triangle read by rows: T(n,g) is the number of rooted maps with n edges on an orientable surface of genus g.
Original entry on oeis.org
1, 2, 9, 1, 54, 20, 378, 307, 21, 2916, 4280, 966, 24057, 56914, 27954, 1485, 208494, 736568, 650076, 113256, 1876446, 9370183, 13271982, 5008230, 225225, 17399772, 117822512, 248371380, 167808024, 24635754, 165297834, 1469283166, 4366441128
Offset: 0
Triangle starts:
n\g [0] [1] [2] [3] [4]
[0] 1;
[1] 2;
[2] 9, 1;
[3] 54, 20;
[4] 378, 307, 21;
[5] 2916, 4280, 966;
[6] 24057, 56914, 27954, 1485;
[7] 208494, 736568, 650076, 113256;
[8] 1876446, 9370183, 13271982, 5008230, 225225;
[9] 17399772, 117822512, 248371380, 167808024, 24635754;
[10] ...
Columns g=0-10 give:
A000168,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358,
A238359,
A238360.
Same as
A238396 except for the zeros.
-
T[0, 0] = 1; T[n_, g_] /; g<0 || g>n/2 = 0; T[n_, g_] := T[n, g] = ((4n-2)/ 3 T[n-1, g] + (2n-3)(2n-2)(2n-1)/12 T[n-2, g-1] + 1/2 Sum[(2k-1)(2(n-k)- 1) T[k-1, i] T[n-k-1, g-i], {k, 1, n-1}, {i, 0, g}])/((n+1)/6);
Table[T[n, g], {n, 0, 10}, {g, 0, n/2}] // Flatten (* Jean-François Alcover, Jul 20 2018 *)
-
N = 9; gmax(n) = n\2;
Q = matrix(N+1, N+1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, N, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric();
concat(vector(N+1, n, vector(1 + gmax(n-1), g, Qget(n-1, g-1))))
A006301
Number of rooted genus-2 maps with n edges.
Original entry on oeis.org
0, 0, 0, 0, 21, 966, 27954, 650076, 13271982, 248371380, 4366441128, 73231116024, 1183803697278, 18579191525700, 284601154513452, 4272100949982600, 63034617139799916, 916440476048146056, 13154166812674577412, 186700695099591735024, 2623742783421329300190, 36548087103760045010148, 505099724454854883618924
Offset: 0
- E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
- T. D. Noe, Table of n, a(n) for n=0..30 (from Mednykh and Nedela)
- E. A. Bender and E. R. Canfield, The number of rooted maps on an orientable surface, J. Combin. Theory, B 53 (1991), 293-299.
- Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], (19-March-2014).
- S. R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 22 Aug 2024.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218.
Rooted maps with n edges of genus g for 0 <= g <= 10:
A000168,
A006300, this sequence,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358,
A238359,
A238360.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 2];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 20 2018 *)
-
A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
A006301_ser(N) = {
my(y=A005159_ser(N+1));
-y*(y-1)^4*(4*y^4 - 16*y^3 + 153*y^2 - 148*y + 196)/(9*(y-2)^7*(y+2)^4);
};
concat([0,0,0,0], Vec(A006301_ser(19))) \\ Gheorghe Coserea, Jun 02 2017
A104742
Number of rooted maps of (orientable) genus 3 containing n edges.
Original entry on oeis.org
1485, 113256, 5008230, 167808024, 4721384790, 117593590752, 2675326679856, 56740864304592, 1137757854901806, 21789659909226960, 401602392805341924, 7165100439281414160, 124314235272290304540, 2105172926498512761984, 34899691847703927826500, 567797719808735191344672, 9084445205688065541367710
Offset: 6
- T. D. Noe, Table of n, a(n) for n = 6..30 (from Mednykh and Nedela)
- E. A. Bender and E. R. Canfield, The number of rooted maps on an orientable surface, J. Combin. Theory, B 53 (1991), 293-299.
- Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], (19-March-2014).
- S. R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 22 Aug 2024.
- A. D. Mednykh and R. Nedela, Enumeration of unrooted maps with given genus, preprint (submitted to J. Combin. Th. B).
Rooted maps with n edges of genus g for 0 <= g <= 10:
A000168,
A006300,
A006301, this sequence,
A215402,
A238355,
A238356,
A238357,
A238358,
A238359,
A238360.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 3];
Table[a[n], {n, 6, 30}] (* Jean-François Alcover, Jul 20 2018 *)
-
A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
A104742_ser(N) = {
my(y=A005159_ser(N+1));
y*(y-1)^6*(460*y^8 - 3680*y^7 + 63055*y^6 - 198110*y^5 + 835954*y^4 - 1408808*y^3 + 1986832*y^2 - 1462400*y + 547552)/(81*(y-2)^12*(y+2)^7)
};
Vec(A104742_ser(17)) \\ Gheorghe Coserea, Jun 02 2017
A215402
Number of rooted maps of (orientable) genus 4 containing n edges.
Original entry on oeis.org
225225, 24635754, 1495900107, 66519597474, 2416610807964, 75981252764664, 2141204115631518, 55352670009315660, 1334226671709010578, 30347730709395639732, 657304672067357799042, 13652607304062788395788, 273469313030628783700080, 5306599156694095573465824, 100128328831437989131706976, 1842794650155970906232185656
Offset: 8
- Andrew Howroyd, Table of n, a(n) for n = 8..500
- Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], (19-March-2014).
- Steven R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 22 Aug 2024.
- Alexander Mednykh, Alain Giorgetti, Enumeration of genus four maps by number of edges, Ars Mathematica Contemporanea 4 (2011), 351--361.
Rooted maps with n edges of genus g for 0 <= g <= 10:
A000168,
A006300,
A006301,
A104742, this sequence,
A238355,
A238356,
A238357,
A238358,
A238359,
A238360.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 4];
Table[a[n], {n, 8, 30}] (* Jean-François Alcover, Jul 20 2018 *)
-
A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
A215402_ser(N) = {
my(y=A005159_ser(N+1));
-y*(y-1)^8*(15812*y^12 - 189744*y^11 + 4708549*y^10 - 24892936*y^9 + 173908449*y^8 - 567987942*y^7 + 1743939189*y^6 - 3485359548*y^5 + 5448471852*y^4 - 6051484928*y^3 + 4633500336*y^2 - 2228416192*y + 517976128)/(81*(y-2)^17*(y+2)^10);
};
Vec(A215402_ser(16)) \\ Gheorghe Coserea, Jun 02 2017
A238355
Number of rooted maps of genus 5 containing n edges.
Original entry on oeis.org
59520825, 8608033980, 672868675017, 37680386599440, 1692352190653740, 64755027944420400, 2190839204960030106, 67194704604610557072, 1901727022434216910002, 50322107898515282999256, 1257582616997225194094310, 29916524874047762719113408, 681758763997451748190036272, 14960113428664295584816860864
Offset: 10
Rooted maps with n edges of genus g for 0 <= g <= 10:
A000168,
A006300,
A006301,
A104742,
A215402, this sequence,
A238356,
A238357,
A238358,
A238359,
A238360.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 5];
Table[a[n], {n, 10, 30}] (* Jean-François Alcover, Jul 20 2018 *)
-
\\ see A238396
-
A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
A238355_ser(N) = {
my(y=A005159_ser(N+1));
y*(y-1)^10*(3149956*y^16 - 50399296*y^15 + 1641189689*y^14 - 12178227918*y^13 + 118643174857*y^12 - 572499071300*y^11 + 2690451915197*y^10 - 8657342508522*y^9 + 23652302179098*y^8 - 49891059998872*y^7 + 84432024838000*y^6 - 112355956173344*y^5 + 115338024848256*y^4 - 88846084908160*y^3 + 48488699816960*y^2 - 16837415717888*y + 2841312026112)/(243*(y-2)^22*(y+2)^13);
};
Vec(A238355_ser(14)) \\ Gheorghe Coserea, Jun 02 2017
A238356
Number of rooted maps of genus 6 containing n edges.
Original entry on oeis.org
24325703325, 4416286056750, 425671555397220, 28948474436455224, 1558252224413413380, 70639804918689629112, 2802850363447807024080, 99911395098598706576856, 3259947795252652107008514, 98729808377337068918681196, 2805432194025270702468165744
Offset: 12
Rooted maps with n edges of genus g for 0 <= g <= 10:
A000168,
A006300,
A006301,
A104742,
A215402,
A238355, this sequence,
A238357,
A238358,
A238359,
A238360.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 6];
Table[a[n], {n, 12, 30}] (* Jean-François Alcover, Jul 20 2018 *)
-
\\ see A238396
-
A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
A238356_ser(N) = {
my(y=A005159_ser(N+1));
-y*(y-1)^12*(3091382412*y^20 - 61827648240*y^19 + 2494741456179*y^18 - 23821030780564*y^17 + 297709107215018*y^16 - 1898397937026724*y^15 + 11996625283021532*y^14 - 53079600835119544*y^13 + 206468965657569764*y^12 - 637634273350412392*y^11 + 1660605297373850222*y^10 - 3573247507645221112*y^9 + 6390852378647917144*y^8 - 9449999309170921856*y^7 + 11435897504002339264*y^6 - 11175919884930946304*y^5 + 8621441033651120896*y^4 - 5068129528843341824*y^3 + 2141653827725309440*y^2 - 581932716954417152*y + 76958488611567616)/(2187*(y-2)^27*(y+2)^16);
};
Vec(A238356_ser(11)) \\ Gheorghe Coserea, Jun 02 2017
A238358
Number of genus-8 rooted maps with n edges.
Original entry on oeis.org
11288163762500625, 2927974178219879250, 394372363395179602125, 36751560969705187643982, 2663973075006196131775590, 160098273686603663417293308, 8303278159618015743881266599, 381958851175370643701603049354, 15896435050196091382215375181044, 607566907750822335161584110201960
Offset: 16
Rooted maps with n edges of genus g for 0 <= g <= 10:
A000168,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357, this sequence,
A238359,
A238360.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 8];
Table[a[n], {n, 16, 30}] (* Jean-François Alcover, Jul 20 2018 *)
-
\\ see A238396
A238359
Number of genus-9 rooted maps with n edges.
Original entry on oeis.org
11665426077721040625, 3498878057690404966500, 540996834819906946713375, 57494374008560749302297480, 4724172886681078698955547790, 320061005837218582787265273000, 18618409220753939214291224549409, 956146512935178711199035220384800, 44232688287025023758415781081779828, 1871678026675570344184400604255444240
Offset: 18
Rooted maps with n edges of genus g for 0 <= g <= 10:
A000168,
A006300,
A006301,
A104742,
A215402,
A238355,
A238356,
A238357,
A238358, this sequence,
A238360.
-
T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
a[n_] := T[n, 9];
Table[a[n], {n, 18, 30}] (* Jean-François Alcover, Jul 20 2018 *)
-
\\ see A238396
Showing 1-10 of 14 results.
Comments