cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A269921 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 1.

Original entry on oeis.org

1, 10, 10, 70, 167, 70, 420, 1720, 1720, 420, 2310, 14065, 24164, 14065, 2310, 12012, 100156, 256116, 256116, 100156, 12012, 60060, 649950, 2278660, 3392843, 2278660, 649950, 60060, 291720, 3944928, 17970784, 36703824, 36703824, 17970784
Offset: 2

Views

Author

Gheorghe Coserea, Mar 14 2016

Keywords

Comments

Row n contains n-1 terms.

Examples

			Triangle starts:
n\f    [1]      [2]      [3]      [4]      [5]      [6]      [7]
[2]    1;
[3]    10,      10;
[4]    70,      167,     70;
[5]    420,     1720,    1720,    420;
[6]    2310,    14065,   24164,   14065,   2310;
[7]    12012,   100156,  256116,  256116,  100156,  12012;
[8]    60060,   649950,  2278660, 3392843, 2278660, 649950,  60060;
[9]    ...
		

Crossrefs

Columns f=1-10 give: A002802 f=1, A006295 f=2, A006296 f=3, A288071 f=4, A288072 f=5, A287046 f=6, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
Row sums give A006300 (column 1 of A269919).
Cf. A006297 (row maxima).

Programs

  • Mathematica
    M = 9; G = 1; gMax[n_] := Min[Quotient[n, 2], G];
    Q = Array[0&, {M + 1, M + 1}];
    Qget[n_, g_] := If[g < 0 || g > n/2, 0, Q[[n + 1, g + 1]]];
    Qset[n_, g_, v_] := (Q[[n + 1, g + 1]] = v );
    Quadric[x_] := (Qset[0, 0, x]; For[n = 1, n <= Length[Q] - 1, n++, For[g = 0, g <= gMax[n], g++, t1 = (1 + x)*(2*n - 1)/3 * Qget[n - 1, g]; t2 = (2*n - 3)*(2*n - 2)*(2*n - 1)/12 * Qget[n - 2, g - 1]; t3 = 1/2 * Sum[ Sum[(2*k - 1) * (2*(n - k) - 1) * Qget[k - 1, i] * Qget[n - k - 1, g - i], {i, 0, g}], {k, 1, n-1}]; Qset[n, g, (t1 + t2 + t3) * 6/(n+1)]]]);
    Quadric[x];
    (List @@@ Table[Qget[n - 1 + 2*G, G] // Expand, {n, 1, M + 1 - 2*G}]) /. x -> 1 // Flatten (* Jean-François Alcover, Jun 13 2017, adapted from PARI *)
  • PARI
    N = 9; G = 1; gmax(n) = min(n\2, G);
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x);
    concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

A215402 Number of rooted maps of (orientable) genus 4 containing n edges.

Original entry on oeis.org

225225, 24635754, 1495900107, 66519597474, 2416610807964, 75981252764664, 2141204115631518, 55352670009315660, 1334226671709010578, 30347730709395639732, 657304672067357799042, 13652607304062788395788, 273469313030628783700080, 5306599156694095573465824, 100128328831437989131706976, 1842794650155970906232185656
Offset: 8

Views

Author

Alain Giorgetti, Aug 09 2012

Keywords

Crossrefs

Row sums of A269924.
Column g=4 of A269919.
Cf. A215019 (unrooted sensed maps), A297880 (unrooted unsensed maps).
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, this sequence, A238355, A238356, A238357, A238358, A238359, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 4];
    Table[a[n], {n, 8, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
    A215402_ser(N) = {
      my(y=A005159_ser(N+1));
      -y*(y-1)^8*(15812*y^12 - 189744*y^11 + 4708549*y^10 - 24892936*y^9 + 173908449*y^8 - 567987942*y^7 + 1743939189*y^6 - 3485359548*y^5 + 5448471852*y^4 - 6051484928*y^3 + 4633500336*y^2 - 2228416192*y + 517976128)/(81*(y-2)^17*(y+2)^10);
    };
    Vec(A215402_ser(16)) \\ Gheorghe Coserea, Jun 02 2017

Extensions

More terms from Joerg Arndt, Feb 26 2014

A238355 Number of rooted maps of genus 5 containing n edges.

Original entry on oeis.org

59520825, 8608033980, 672868675017, 37680386599440, 1692352190653740, 64755027944420400, 2190839204960030106, 67194704604610557072, 1901727022434216910002, 50322107898515282999256, 1257582616997225194094310, 29916524874047762719113408, 681758763997451748190036272, 14960113428664295584816860864
Offset: 10

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Crossrefs

Row sums of A269925.
Column g=5 of A269919.
Cf. A239918 (unrooted sensed), A348798 (unrooted unsensed)
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, this sequence, A238356, A238357, A238358, A238359, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 5];
    Table[a[n], {n, 10, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    \\ see A238396
    
  • PARI
    A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
    A238355_ser(N) = {
      my(y=A005159_ser(N+1));
      y*(y-1)^10*(3149956*y^16 - 50399296*y^15 + 1641189689*y^14 - 12178227918*y^13 + 118643174857*y^12 - 572499071300*y^11 + 2690451915197*y^10 - 8657342508522*y^9 + 23652302179098*y^8 - 49891059998872*y^7 + 84432024838000*y^6 - 112355956173344*y^5 + 115338024848256*y^4 - 88846084908160*y^3 + 48488699816960*y^2 - 16837415717888*y + 2841312026112)/(243*(y-2)^22*(y+2)^13);
    };
    Vec(A238355_ser(14)) \\ Gheorghe Coserea, Jun 02 2017

A238356 Number of rooted maps of genus 6 containing n edges.

Original entry on oeis.org

24325703325, 4416286056750, 425671555397220, 28948474436455224, 1558252224413413380, 70639804918689629112, 2802850363447807024080, 99911395098598706576856, 3259947795252652107008514, 98729808377337068918681196, 2805432194025270702468165744
Offset: 12

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Crossrefs

Column g=6 of A269919.
Cf. A239919 (unrooted sensed), A348798 (unrooted unsensed).
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, A238355, this sequence, A238357, A238358, A238359, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 6];
    Table[a[n], {n, 12, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    \\ see A238396
    
  • PARI
    A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
    A238356_ser(N) = {
      my(y=A005159_ser(N+1));
      -y*(y-1)^12*(3091382412*y^20 - 61827648240*y^19 + 2494741456179*y^18 - 23821030780564*y^17 + 297709107215018*y^16 - 1898397937026724*y^15 + 11996625283021532*y^14 - 53079600835119544*y^13 + 206468965657569764*y^12 - 637634273350412392*y^11 + 1660605297373850222*y^10 - 3573247507645221112*y^9 + 6390852378647917144*y^8 - 9449999309170921856*y^7 + 11435897504002339264*y^6 - 11175919884930946304*y^5 + 8621441033651120896*y^4 - 5068129528843341824*y^3 + 2141653827725309440*y^2 - 581932716954417152*y + 76958488611567616)/(2187*(y-2)^27*(y+2)^16);
    };
    Vec(A238356_ser(11)) \\ Gheorghe Coserea, Jun 02 2017

A238357 Number of genus-7 rooted maps with n edges.

Original entry on oeis.org

14230536445125, 3128879373858000, 360626952084151500, 29001816720933903504, 1828003659229082834100, 96187365300257285300064, 4395215998078319892167640, 179153431308203084149883760, 6641365771586560905099092466, 227189907562197156785567456832, 7252879937219595844346639732688
Offset: 14

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Crossrefs

Column g=7 of A269919.
Cf. A239921 (unrooted sensed), A348800 (unrooted unsensed).
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, A238355, A238356, this sequence, A238358, A238359, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 7];
    Table[a[n], {n, 14, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    \\ see A238396
    
  • PARI
    system("wget http://oeis.org/A238357/a238357.txt");
    A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
    A238357_ser(N) = subst(read("a238357.txt"), 'y, A005159_ser(N+14));
    Vec(A238357_ser(11)) \\ Gheorghe Coserea, Jun 03 2017

A238358 Number of genus-8 rooted maps with n edges.

Original entry on oeis.org

11288163762500625, 2927974178219879250, 394372363395179602125, 36751560969705187643982, 2663973075006196131775590, 160098273686603663417293308, 8303278159618015743881266599, 381958851175370643701603049354, 15896435050196091382215375181044, 607566907750822335161584110201960
Offset: 16

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Crossrefs

Column g=8 of A269919.
Cf. A239922 (unrooted sensed), A348801 (unrooted unsensed).
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, A238355, A238356, A238357, this sequence, A238359, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 8];
    Table[a[n], {n, 16, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    \\ see A238396

A238359 Number of genus-9 rooted maps with n edges.

Original entry on oeis.org

11665426077721040625, 3498878057690404966500, 540996834819906946713375, 57494374008560749302297480, 4724172886681078698955547790, 320061005837218582787265273000, 18618409220753939214291224549409, 956146512935178711199035220384800, 44232688287025023758415781081779828, 1871678026675570344184400604255444240
Offset: 18

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Crossrefs

Column g=9 of A269919.
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, A238355, A238356, A238357, A238358, this sequence, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 9];
    Table[a[n], {n, 18, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    \\ see A238396

A238360 Number of genus-10 rooted maps with n edges.

Original entry on oeis.org

15230046989184655753125, 5199629454143883380553750, 909887917857275652461097750, 108861830345440643086946970900, 10021124647635764856828690342402, 757187906770815991999545249667404, 48918614114003431712044170834572688, 2779227352989564224315657269511192976, 141720718575991991799057452443438430580
Offset: 20

Views

Author

Joerg Arndt, Feb 26 2014

Keywords

Crossrefs

Column g=10 of A269919.
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, A215402, A238355, A238356, A238357, A238358, A238359, this sequence.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 10];
    Table[a[n], {n, 20, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    \\ see A238396

A269920 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 0.

Original entry on oeis.org

1, 1, 1, 2, 5, 2, 5, 22, 22, 5, 14, 93, 164, 93, 14, 42, 386, 1030, 1030, 386, 42, 132, 1586, 5868, 8885, 5868, 1586, 132, 429, 6476, 31388, 65954, 65954, 31388, 6476, 429, 1430, 26333, 160648, 442610, 614404, 442610, 160648, 26333, 1430
Offset: 0

Views

Author

Gheorghe Coserea, Mar 14 2016

Keywords

Comments

Row n contains n+1 terms.

Examples

			Triangle starts:
n\f    [1]     [2]     [3]     [4]     [5]     [6]     [7]     [8]
[0]    1;
[1]    1,      1;
[2]    2,      5,      2;
[3]    5,      22,     22,     5;
[4]    14,     93,     164,    93,     14;
[5]    42,     386,    1030,   1030,   386,    42;
[6]    132,    1586,   5868,   8885,   5868,   1586,   132;
[7]    429,    6476,   31388,  65954,  65954,  31388,  6476,   429;
[8]    ...
		

Crossrefs

Columns k=1-6 give: A000108, A000346, A000184, A000365, A000473, A000502.
Row sums give A000168 (column 0 of A269919).
Cf. A006294 (row maxima).

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    Table[Q[n, f, 0], {n, 0, 8}, {f, 1, n+1}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
  • PARI
    N = 8; G = 0; gmax(n) = min(n\2, G);
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x);
    concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

A269922 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 2.

Original entry on oeis.org

21, 483, 483, 6468, 15018, 6468, 66066, 258972, 258972, 66066, 570570, 3288327, 5554188, 3288327, 570570, 4390386, 34374186, 85421118, 85421118, 34374186, 4390386, 31039008, 313530000, 1059255456, 1558792200, 1059255456, 313530000, 31039008
Offset: 4

Views

Author

Gheorghe Coserea, Mar 15 2016

Keywords

Comments

Row n contains n-3 terms.

Examples

			Triangle starts:
n\f  [1]        [2]        [3]        [4]        [5]        [6]
[4]  21;
[5]  483,       483;
[6]  6468,      15018,     6468;
[7]  66066,     258972,    258972,    66066;
[8]  570570,    3288327,   5554188,   3288327,   570570;
[9]  4390386,   34374186,  85421118,  85421118,  34374186,  4390386;
[10] ...
		

Crossrefs

Columns f=1-10 give: A006298 f=1, A288082 f=2, A288083 f=3, A288084 f=4, A288085 f=5, A288086 f=6, A288087 f=7, A288088 f=8, A288089 f=9, A288090 f=10.
Row sums give A006301 (column 2 of A269919).
Cf. A006299 (row maxima), A269921.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    Table[Q[n, f, 2], {n, 4, 10}, {f, 1, n-3}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
  • PARI
    N = 10; G = 2; gmax(n) = min(n\2, G);
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x);
    concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
Showing 1-10 of 17 results. Next