A269924
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 4.
Original entry on oeis.org
225225, 12317877, 12317877, 351683046, 792534015, 351683046, 7034538511, 26225260226, 26225260226, 7034538511, 111159740692, 600398249550, 993494827480, 600398249550, 111159740692, 1480593013900, 10743797911132, 25766235457300, 25766235457300, 10743797911132, 1480593013900, 17302190625720, 160576594766588, 517592962672296, 750260619502310, 517592962672296, 160576594766588, 17302190625720
Offset: 8
Triangle starts:
n\f [1] [2] [3] [4]
[8] 225225;
[9] 12317877, 12317877;
[10] 351683046, 792534015, 351683046;
[11] 7034538511, 26225260226, 26225260226, 7034538511;
[12] ...
Cf.
A035309,
A269921,
A269922,
A269923,
A269925,
A270406,
A270407,
A270408,
A270409,
A270410,
A270412.
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 4], {n, 8, 14}, {f, 1, n-7}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 14; G = 4; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
A269925
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 5.
Original entry on oeis.org
59520825, 4304016990, 4304016990, 158959754226, 354949166565, 158959754226, 4034735959800, 14805457339920, 14805457339920, 4034735959800, 79553497760100, 420797306522502, 691650582088536, 420797306522502, 79553497760100, 1302772718028600, 9220982517965400, 21853758736216200, 21853758736216200, 9220982517965400, 1302772718028600
Offset: 10
Triangle starts:
n\f [1] [2] [3] [4]
[10] 59520825;
[11] 4304016990, 4304016990;
[12] 15895975422, 354949166565, 158959754226;
[13] 4034735959800, 14805457339920, 14805457339920, 4034735959800;
[14] ...
Cf.
A035309,
A269921,
A269922,
A269923,
A269924,
A270406,
A270407,
A270408,
A270409,
A270410,
A270411,
A270412.
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 5], {n, 10, 15}, {f, 1, n-9}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 15; G = 5; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
A269923
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 3.
Original entry on oeis.org
1485, 56628, 56628, 1169740, 2668750, 1169740, 17454580, 66449432, 66449432, 17454580, 211083730, 1171704435, 1955808460, 1171704435, 211083730, 2198596400, 16476937840, 40121261136, 40121261136, 16476937840, 2198596400, 20465052608, 196924458720, 647739636160
Offset: 6
Triangle starts:
n\f [1] [2] [3] [4] [5]
[6] 1485;
[7] 56628, 56628;
[8] 1169740, 2668750, 1169740;
[9] 17454580, 66449432, 66449432, 17454580;
[10] 211083730, 1171704435, 1955808460, 1171704435, 211083730;
[11] ...
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 3], {n, 6, 12}, {f, 1, n-5}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 12; G = 3; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
A288082
a(n) is the number of rooted maps with n edges and 2 faces on an orientable surface of genus 2.
Original entry on oeis.org
483, 15018, 258972, 3288327, 34374186, 313530000, 2583699888, 19678611645, 140725699686, 955708437684, 6216591472728, 38985279745230, 236923660397172, 1401097546161936, 8089830217844928, 45732525474843801, 253705943922820830, 1383896652090932364, 7434748752218650632, 39394773780853063650
Offset: 5
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 2, 2];
Table[a[n], {n, 5, 24}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288082_ser(N) = {
my(y = A000108_ser(N+1));
3*y*(y-1)^5*(7*y^4 + 294*y^3 + 309*y^2 - 547*y + 98)/(y-2)^14;
};
Vec(A288082_ser(20))
A288083
a(n) is the number of rooted maps with n edges and 3 faces on an orientable surface of genus 2.
Original entry on oeis.org
6468, 258972, 5554188, 85421118, 1059255456, 11270290416, 106853266632, 925572602058, 7454157823560, 56532447160536, 407653880116680, 2815913391715452, 18743188498056288, 120789163612555200, 756589971284883792, 4621041111902656770, 27595482540212519064, 161490751719681569736
Offset: 6
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 3, 2];
Table[a[n], {n, 6, 23}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288083_ser(N) = {
my(y = A000108_ser(N+1));
-6*y*(y-1)^6*(161*y^5 + 4005*y^4 + 4173*y^3 - 10701*y^2 + 2880*y + 560)/(y-2)^17;
};
Vec(A288083_ser(18))
A288084
a(n) is the number of rooted maps with n edges and 4 faces on an orientable surface of genus 2.
Original entry on oeis.org
66066, 3288327, 85421118, 1558792200, 22555934280, 276221817810, 2979641557620, 29079129795702, 261637840342860, 2200626948631386, 17486142956133684, 132344695964811720, 960323177351524512, 6716133365837116980, 45466867668336614472, 299027167905149145858, 1916387674555902480660
Offset: 7
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 4, 2];
Table[a[n], {n, 7, 23}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288084_ser(N) = {
my(y = A000108_ser(N+1));
3*y*(y-1)^7*(9318*y^6 + 178328*y^5 + 177929*y^4 - 611583*y^3 + 195218*y^2 + 110388*y - 37576)/(y-2)^20;
};
Vec(A288084_ser(17))
A288085
a(n) is the number of rooted maps with n edges and 5 faces on an orientable surface of genus 2.
Original entry on oeis.org
570570, 34374186, 1059255456, 22555934280, 375708427812, 5235847653036, 63648856688592, 694146691745820, 6928413234959820, 64232028100704156, 559373367462490656, 4616545437250956192, 36362952155187558600, 274925536462366808760, 2004633652255211204832, 14152391716870383219492
Offset: 8
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 5, 2];
Table[a[n], {n, 8, 23}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288085_ser(N) = {
my(y = A000108_ser(N+1));
-6*y*(y-1)^8*(108346*y^7 + 1760421*y^6 + 1641979*y^5 - 7296839*y^4 + 2560152*y^3 + 2713196*y^2 - 1525104*y + 132944)/(y-2)^23;
};
Vec(A288085_ser(16))
A288086
a(n) is the number of rooted maps with n edges and 6 faces on an orientable surface of genus 2.
Original entry on oeis.org
4390386, 313530000, 11270290416, 276221817810, 5235847653036, 82234427131416, 1117259292848016, 13518984452463630, 148755268498286436, 1511718920778951024, 14358354462488121408, 128656798319026864068, 1095747149735034238680, 8924653047010981590288, 69866689045523025725664
Offset: 9
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 6, 2];
Table[a[n], {n, 9, 23}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288086_ser(N) = {
my(y = A000108_ser(N+1));
6*y*(y-1)^9*(2211997*y^8 + 32071458*y^7 + 27414609*y^6 - 154896511*y^5 + 58087530*y^4 + 94331624*y^3 - 68497296*y^2 + 8775424*y + 1232896)/(y-2)^26;
};
Vec(A288086_ser(15))
A288087
a(n) is the number of rooted maps with n edges and 7 faces on an orientable surface of genus 2.
Original entry on oeis.org
31039008, 2583699888, 106853266632, 2979641557620, 63648856688592, 1117259292848016, 16842445235560944, 224686278407291148, 2710382626755160416, 30044423965980553536, 309859885439753598768, 3002524783711124880936, 27551689577648333614176, 240961534103705377359840, 2019318707410947848445792
Offset: 10
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 7, 2];
Table[a[n], {n, 10, 24}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288087_ser(N) = {
my(y = A000108_ser(N+1));
-12*y*(y-1)^10*(20697615*y^9 + 275716321*y^8 + 211910021*y^7 - 1514443109*y^6 + 601694224*y^5 + 1328709592*y^4 - 1136750032*y^3 + 153705072*y^2 + 76788992*y - 15442112)/(y-2)^29;
};
Vec(A288087_ser(15))
A288088
a(n) is the number of rooted maps with n edges and 8 faces on an orientable surface of genus 2.
Original entry on oeis.org
205633428, 19678611645, 925572602058, 29079129795702, 694146691745820, 13518984452463630, 224686278407291148, 3286157560248860532, 43241609165618454096, 520516978029736518606, 5805858136761540452700, 60619447491266688750132, 597358002436877437320936, 5593151345725345725640044
Offset: 11
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 8, 2];
Table[a[n], {n, 11, 24}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288088_ser(N) = {
my(y = A000108_ser(N+1));
3*y*(y-1)^11*(1455480376*y^10 + 18151410348*y^9 + 12284790745*y^8 - 111454641175*y^7 + 46880062914*y^6 + 129967691724*y^5 - 125047028168*y^4 + 14650142480*y^3 + 19075464224*y^2 - 6255822912*y + 360993920)/(y-2)^32;
};
Vec(A288088_ser(14))
Showing 1-10 of 13 results.
Comments