A269922
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 2.
Original entry on oeis.org
21, 483, 483, 6468, 15018, 6468, 66066, 258972, 258972, 66066, 570570, 3288327, 5554188, 3288327, 570570, 4390386, 34374186, 85421118, 85421118, 34374186, 4390386, 31039008, 313530000, 1059255456, 1558792200, 1059255456, 313530000, 31039008
Offset: 4
Triangle starts:
n\f [1] [2] [3] [4] [5] [6]
[4] 21;
[5] 483, 483;
[6] 6468, 15018, 6468;
[7] 66066, 258972, 258972, 66066;
[8] 570570, 3288327, 5554188, 3288327, 570570;
[9] 4390386, 34374186, 85421118, 85421118, 34374186, 4390386;
[10] ...
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 2], {n, 4, 10}, {f, 1, n-3}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 10; G = 2; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
A288082
a(n) is the number of rooted maps with n edges and 2 faces on an orientable surface of genus 2.
Original entry on oeis.org
483, 15018, 258972, 3288327, 34374186, 313530000, 2583699888, 19678611645, 140725699686, 955708437684, 6216591472728, 38985279745230, 236923660397172, 1401097546161936, 8089830217844928, 45732525474843801, 253705943922820830, 1383896652090932364, 7434748752218650632, 39394773780853063650
Offset: 5
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 2, 2];
Table[a[n], {n, 5, 24}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288082_ser(N) = {
my(y = A000108_ser(N+1));
3*y*(y-1)^5*(7*y^4 + 294*y^3 + 309*y^2 - 547*y + 98)/(y-2)^14;
};
Vec(A288082_ser(20))
A288083
a(n) is the number of rooted maps with n edges and 3 faces on an orientable surface of genus 2.
Original entry on oeis.org
6468, 258972, 5554188, 85421118, 1059255456, 11270290416, 106853266632, 925572602058, 7454157823560, 56532447160536, 407653880116680, 2815913391715452, 18743188498056288, 120789163612555200, 756589971284883792, 4621041111902656770, 27595482540212519064, 161490751719681569736
Offset: 6
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 3, 2];
Table[a[n], {n, 6, 23}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288083_ser(N) = {
my(y = A000108_ser(N+1));
-6*y*(y-1)^6*(161*y^5 + 4005*y^4 + 4173*y^3 - 10701*y^2 + 2880*y + 560)/(y-2)^17;
};
Vec(A288083_ser(18))
A288084
a(n) is the number of rooted maps with n edges and 4 faces on an orientable surface of genus 2.
Original entry on oeis.org
66066, 3288327, 85421118, 1558792200, 22555934280, 276221817810, 2979641557620, 29079129795702, 261637840342860, 2200626948631386, 17486142956133684, 132344695964811720, 960323177351524512, 6716133365837116980, 45466867668336614472, 299027167905149145858, 1916387674555902480660
Offset: 7
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 4, 2];
Table[a[n], {n, 7, 23}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288084_ser(N) = {
my(y = A000108_ser(N+1));
3*y*(y-1)^7*(9318*y^6 + 178328*y^5 + 177929*y^4 - 611583*y^3 + 195218*y^2 + 110388*y - 37576)/(y-2)^20;
};
Vec(A288084_ser(17))
A288086
a(n) is the number of rooted maps with n edges and 6 faces on an orientable surface of genus 2.
Original entry on oeis.org
4390386, 313530000, 11270290416, 276221817810, 5235847653036, 82234427131416, 1117259292848016, 13518984452463630, 148755268498286436, 1511718920778951024, 14358354462488121408, 128656798319026864068, 1095747149735034238680, 8924653047010981590288, 69866689045523025725664
Offset: 9
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 6, 2];
Table[a[n], {n, 9, 23}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288086_ser(N) = {
my(y = A000108_ser(N+1));
6*y*(y-1)^9*(2211997*y^8 + 32071458*y^7 + 27414609*y^6 - 154896511*y^5 + 58087530*y^4 + 94331624*y^3 - 68497296*y^2 + 8775424*y + 1232896)/(y-2)^26;
};
Vec(A288086_ser(15))
A288087
a(n) is the number of rooted maps with n edges and 7 faces on an orientable surface of genus 2.
Original entry on oeis.org
31039008, 2583699888, 106853266632, 2979641557620, 63648856688592, 1117259292848016, 16842445235560944, 224686278407291148, 2710382626755160416, 30044423965980553536, 309859885439753598768, 3002524783711124880936, 27551689577648333614176, 240961534103705377359840, 2019318707410947848445792
Offset: 10
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 7, 2];
Table[a[n], {n, 10, 24}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288087_ser(N) = {
my(y = A000108_ser(N+1));
-12*y*(y-1)^10*(20697615*y^9 + 275716321*y^8 + 211910021*y^7 - 1514443109*y^6 + 601694224*y^5 + 1328709592*y^4 - 1136750032*y^3 + 153705072*y^2 + 76788992*y - 15442112)/(y-2)^29;
};
Vec(A288087_ser(15))
A288088
a(n) is the number of rooted maps with n edges and 8 faces on an orientable surface of genus 2.
Original entry on oeis.org
205633428, 19678611645, 925572602058, 29079129795702, 694146691745820, 13518984452463630, 224686278407291148, 3286157560248860532, 43241609165618454096, 520516978029736518606, 5805858136761540452700, 60619447491266688750132, 597358002436877437320936, 5593151345725345725640044
Offset: 11
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 8, 2];
Table[a[n], {n, 11, 24}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288088_ser(N) = {
my(y = A000108_ser(N+1));
3*y*(y-1)^11*(1455480376*y^10 + 18151410348*y^9 + 12284790745*y^8 - 111454641175*y^7 + 46880062914*y^6 + 129967691724*y^5 - 125047028168*y^4 + 14650142480*y^3 + 19075464224*y^2 - 6255822912*y + 360993920)/(y-2)^32;
};
Vec(A288088_ser(14))
A288089
a(n) is the number of rooted maps with n edges and 9 faces on an orientable surface of genus 2.
Original entry on oeis.org
1293938646, 140725699686, 7454157823560, 261637840342860, 6928413234959820, 148755268498286436, 2710382626755160416, 43241609165618454096, 617910462111714896820, 8044640800289827566756, 96690983139765469347024, 1084226645505246141589704, 11439196912435362172792536, 114351801899024314438876200
Offset: 12
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 9, 2];
Table[a[n], {n, 12, 25}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288089_ser(N) = {
my(y = A000108_ser(N+1));
-6*y*(y-1)^12*(12205186004*y^11 + 144345246789*y^10 + 83883548039*y^9 - 978172313331*y^8 + 436600889944*y^7 + 1435650005364*y^6 - 1511798886368*y^5 + 121539026592*y^4 + 411304907520*y^3 - 171035694144*y^2 + 14120686592*y + 1573053440)/(y-2)^35;
};
Vec(A288089_ser(13))
A288090
a(n) is the number of rooted maps with n edges and 10 faces on an orientable surface of genus 2.
Original entry on oeis.org
7808250450, 955708437684, 56532447160536, 2200626948631386, 64232028100704156, 1511718920778951024, 30044423965980553536, 520516978029736518606, 8044640800289827566756, 112860842135424498808968, 1456882832375987896763184, 17491588653334242501297012, 197038603477850885815215480
Offset: 13
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 10, 2];
Table[a[n], {n, 13, 25}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288090_ser(N) = {
my(y = A000108_ser(N+1));
6*y*(y-1)^13*(197300616213*y^12 + 2233379349250*y^11 + 1077980722075*y^10 - 16537713992125*y^9 + 7856375825902*y^8 + 29387232350368*y^7 - 33290642716432*y^6 + 994024496848*y^5 + 14078465181600*y^4 - 6737013421440*y^3 + 532103069696*y^2 + 244607984896*y - 34798091776)/(y-2)^38;
};
Vec(A288090_ser(13))
Showing 1-9 of 9 results.
Comments