cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A215402 Number of rooted maps of (orientable) genus 4 containing n edges.

Original entry on oeis.org

225225, 24635754, 1495900107, 66519597474, 2416610807964, 75981252764664, 2141204115631518, 55352670009315660, 1334226671709010578, 30347730709395639732, 657304672067357799042, 13652607304062788395788, 273469313030628783700080, 5306599156694095573465824, 100128328831437989131706976, 1842794650155970906232185656
Offset: 8

Views

Author

Alain Giorgetti, Aug 09 2012

Keywords

Crossrefs

Row sums of A269924.
Column g=4 of A269919.
Cf. A215019 (unrooted sensed maps), A297880 (unrooted unsensed maps).
Rooted maps with n edges of genus g for 0 <= g <= 10: A000168, A006300, A006301, A104742, this sequence, A238355, A238356, A238357, A238358, A238359, A238360.

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, g_] /; g < 0 || g > n/2 = 0; T[n_, g_] := T[n, g] = ((4 n - 2)/3 T[n - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 T[n - 2, g - 1] + 1/2 Sum[(2 k - 1) (2 (n - k) - 1) T[k - 1, i] T[n - k - 1, g - i], {k, 1, n - 1}, {i, 0, g}])/((n + 1)/6);
    a[n_] := T[n, 4];
    Table[a[n], {n, 8, 30}] (* Jean-François Alcover, Jul 20 2018 *)
  • PARI
    A005159_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-12*x))/(6*x);
    A215402_ser(N) = {
      my(y=A005159_ser(N+1));
      -y*(y-1)^8*(15812*y^12 - 189744*y^11 + 4708549*y^10 - 24892936*y^9 + 173908449*y^8 - 567987942*y^7 + 1743939189*y^6 - 3485359548*y^5 + 5448471852*y^4 - 6051484928*y^3 + 4633500336*y^2 - 2228416192*y + 517976128)/(81*(y-2)^17*(y+2)^10);
    };
    Vec(A215402_ser(16)) \\ Gheorghe Coserea, Jun 02 2017

Extensions

More terms from Joerg Arndt, Feb 26 2014

A269925 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 5.

Original entry on oeis.org

59520825, 4304016990, 4304016990, 158959754226, 354949166565, 158959754226, 4034735959800, 14805457339920, 14805457339920, 4034735959800, 79553497760100, 420797306522502, 691650582088536, 420797306522502, 79553497760100, 1302772718028600, 9220982517965400, 21853758736216200, 21853758736216200, 9220982517965400, 1302772718028600
Offset: 10

Views

Author

Gheorghe Coserea, Mar 15 2016

Keywords

Comments

Row n contains n-9 terms.

Examples

			Triangle starts:
n\f  [1]             [2]             [3]             [4]
[10] 59520825;
[11] 4304016990,     4304016990;
[12] 15895975422,    354949166565,   158959754226;
[13] 4034735959800,  14805457339920, 14805457339920, 4034735959800;
[14] ...
		

Crossrefs

Rooted maps of genus 5 with n edges and f faces for 1<=f<=10: A288281 f=1, A288282 f=2, A288283 f=3, A288284 f=4, A288285 f=5, A288286 f=6, A288287 f=7, A288288 f=8, A288289 f=9, A288290 f=10.
Row sums give A238355 (column 5 of A269919).

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    Table[Q[n, f, 5], {n, 10, 15}, {f, 1, n-9}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
  • PARI
    N = 15; G = 5; gmax(n) = min(n\2, G);
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x);
    concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

A269923 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 3.

Original entry on oeis.org

1485, 56628, 56628, 1169740, 2668750, 1169740, 17454580, 66449432, 66449432, 17454580, 211083730, 1171704435, 1955808460, 1171704435, 211083730, 2198596400, 16476937840, 40121261136, 40121261136, 16476937840, 2198596400, 20465052608, 196924458720, 647739636160
Offset: 6

Views

Author

Gheorghe Coserea, Mar 15 2016

Keywords

Comments

Row n contains n-5 terms.

Examples

			Triangle starts:
n\f  [1]          [2]          [3]          [4]          [5]
[6]  1485;
[7]  56628,       56628;
[8]  1169740,     2668750,     1169740;
[9]  17454580,    66449432,    66449432,    17454580;
[10] 211083730,   1171704435,  1955808460,  1171704435,  211083730;
[11] ...
		

Crossrefs

Columns f=1-10 give: A288075 f=1, A288076 f=2, A288077 f=3, A288078 f=4, A288079 f=5, A288080 f=6, A288081 f=7, A288262 f=8, A288263 f=9, A288264 f=10.
Row sums give A104742 (column 3 of A269919).

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    Table[Q[n, f, 3], {n, 6, 12}, {f, 1, n-5}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
  • PARI
    N = 12; G = 3; gmax(n) = min(n\2, G);
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x);
    concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

A288276 a(n) is the number of rooted maps with n edges and 6 faces on an orientable surface of genus 4.

Original entry on oeis.org

1480593013900, 160576594766588, 8615949311310872, 309197871098871838, 8419549939292302908, 186553519919803261860, 3515647035511186627416, 58089920897558352891672, 860337164444236894357488, 11612741439751867739074432, 144715531380208437909370144, 1682205432436689960841795876
Offset: 13

Views

Author

Gheorghe Coserea, Jun 08 2017

Keywords

Crossrefs

Rooted maps of genus 4 with n edges and f faces for 1<=f<=10: A288271 f=1, A288272 f=2, A288273 f=3, A288274 f=4, A288275 f=5, this sequence, A288277 f=7, A288278 f=8, A288279 f=9, A288280 f=10.
Column 6 of A269924.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n-1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 6, 4];
    Table[a[n], {n, 13, 24}] (* Jean-François Alcover, Oct 16 2018 *)

Formula

G.f.: 2*y*(y-1)^13*(1208305403982*y^12 + 42344287039512*y^11 + 283047148578040*y^10 + 47183718440672*y^9 - 1618438221531593*y^8 + 617910272368381*y^7 + 2488374601412831*y^6 - 2268379207704481*y^5 - 116197489174642*y^4 + 764144804102008*y^3 - 252877960850800*y^2 + 8651012216320*y + 3769026206720)/(y-2)^38, where y=A000108(x).

A288271 a(n) is the number of rooted maps with n edges and one face on an orientable surface of genus 4.

Original entry on oeis.org

225225, 12317877, 351683046, 7034538511, 111159740692, 1480593013900, 17302190625720, 182231849209410, 1763184571730010, 15894791312284170, 134951136993773100, 1088243826731751690, 8391311316938069520, 62210659883935683120, 445441857820701181440, 3092035882104030618900
Offset: 8

Views

Author

Gheorghe Coserea, Jun 08 2017

Keywords

Crossrefs

Rooted maps of genus 4 with n edges and f faces for 1<=f<=10: this sequence, A288272 f=2, A288273 f=3, A288274 f=4, A288275 f=5, A288276 f=6, A288277 f=7, A288278 f=8, A288279 f=9, A288280 f=10.
Column 1 of A269924.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 1, 4];
    Table[a[n], {n, 8, 23}] (* Jean-François Alcover, Oct 16 2018 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A288271_ser(N) = {
      my(y = A000108_ser(N+1));
      -143*y*(y-1)^8*(1575*y^6 + 13689*y^5 + 4689*y^4 - 34417*y^3 + 11361*y^2 + 7017*y - 2339)/(y-2)^23;
    };
    Vec(A288271_ser(16))

Formula

G.f.: -143*y*(y-1)^8*(1575*y^6 + 13689*y^5 + 4689*y^4 - 34417*y^3 + 11361*y^2 + 7017*y - 2339)/(y-2)^23, where y=A000108(x).

A288272 a(n) is the number of rooted maps with n edges and 2 faces on an orientable surface of genus 4.

Original entry on oeis.org

12317877, 792534015, 26225260226, 600398249550, 10743797911132, 160576594766588, 2089035241981688, 24325590127655531, 258634264294653390, 2548272396065512974, 23532893106071038404, 205518653220527665304, 1709552077642556424368, 13623964536133602210560, 104522878918062035228512
Offset: 9

Views

Author

Gheorghe Coserea, Jun 08 2017

Keywords

Crossrefs

Rooted maps of genus 4 with n edges and f faces for 1<=f<=10: A288271 f=1, this sequence, A288273 f=3, A288274 f=4, A288275 f=5, A288276 f=6, A288277 f=7, A288278 f=8, A288279 f=9, A288280 f=10.
Column 2 of A269924.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 2, 4];
    Table[a[n], {n, 9, 23}] (* Jean-François Alcover, Oct 16 2018 *)

Formula

G.f.: y*(y-1)^9*(225225*y^8 + 25467156*y^7 + 207300366*y^6 + 77853486*y^5 - 660073489*y^4 + 222312257*y^3 + 269246651*y^2 - 140048085*y + 10034310)/(y-2)^26, where y=A000108(x).

A288273 a(n) is the number of rooted maps with n edges and 3 faces on an orientable surface of genus 4.

Original entry on oeis.org

351683046, 26225260226, 993494827480, 25766235457300, 517592962672296, 8615949311310872, 123981042854132536, 1587135819804394530, 18451302662846918700, 197822824662547694148, 1979281881126113225376, 18654346303702719912848, 166862901890503876520320, 1425340713681247480547040, 11686190470805703242554960
Offset: 10

Views

Author

Gheorghe Coserea, Jun 08 2017

Keywords

Crossrefs

Rooted maps of genus 4 with n edges and f faces for 1<=f<=10: A288271 f=1, A288272 f=2, this sequence, A288274 f=4, A288275 f=5, A288276 f=6, A288277 f=7, A288278 f=8, A288279 f=9, A288280 f=10.
Column 3 of A269924.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l- 1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 3, 4];
    Table[a[n], {n, 10, 24}] (* Jean-François Alcover, Oct 16 2018 *)

Formula

G.f.: -2*y*(y-1)^10*(12317877*y^9 + 793781118*y^8 + 6094043038*y^7 + 2216299748*y^6 - 23375789497*y^5 + 7963356801*y^4 + 15368481377*y^3 - 10027219339*y^2 + 877859200*y + 252711200)/(y-2)^29, where y=A000108(x).

A288274 a(n) is the number of rooted maps with n edges and 4 faces on an orientable surface of genus 4.

Original entry on oeis.org

7034538511, 600398249550, 25766235457300, 750260619502310, 16789118602155860, 309197871098871838, 4892650539994184868, 68503375296263488977, 866831237081712285138, 10071757699155275906824, 108780460548715291414960, 1102776421660293787585728, 10575907938883627723298512, 96567859695821049858887188, 844021580327996006292420440
Offset: 11

Views

Author

Gheorghe Coserea, Jun 08 2017

Keywords

Crossrefs

Rooted maps of genus 4 with n edges and f faces for 1<=f<=10: A288271 f=1, A288272 f=2, A288273 f=3, this sequence, A288275 f=5, A288276 f=6, A288277 f=7, A288278 f=8, A288279 f=9, A288280 f=10.
Column 4 of A269924.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 4, 4];
    Table[a[n], {n, 11, 25}] (* Jean-François Alcover, Oct 16 2018 *)

Formula

G.f.: y*(y-1)^11*(1495900107*y^10 + 72057286944*y^9 + 525358145917*y^8 + 168001652997*y^7 - 2349735380723*y^6 + 817302422933*y^5 + 2199510551627*y^4 - 1660311974101*y^3 + 109057768182*y^2 + 147825658668*y - 23527494040)/(y-2)^32, where y=A000108(x).

A288275 a(n) is the number of rooted maps with n edges and 5 faces on an orientable surface of genus 4.

Original entry on oeis.org

111159740692, 10743797911132, 517592962672296, 16789118602155860, 415691294404230748, 8419549939292302908, 145737674581607574840, 2221381417843144801098, 30468100266480917147760, 382217975972687580876304, 4441222132558609054169216, 48280421251792089554320464
Offset: 12

Views

Author

Gheorghe Coserea, Jun 08 2017

Keywords

Crossrefs

Rooted maps of genus 4 with n edges and f faces for 1<=f<=10: A288271 f=1, A288272 f=2, A288273 f=3, A288274 f=4, this sequence, A288276 f=6, A288277 f=7, A288278 f=8, A288279 f=9, A288280 f=10.
Column 5 of A269924.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 5, 4];
    Table[a[n], {n, 12, 23}] (* Jean-François Alcover, Oct 16 2018 *)

Formula

G.f.: -2*y*(y-1)^12*(33259798737*y^11 + 1329990099093*y^10 + 9262655718313*y^9 + 2336641955449*y^8 - 47227883527259*y^7 + 17056753299711*y^6 + 58186472373731*y^5 - 48817840576153*y^4 + 819511081872*y^3 + 9462230411332*y^2 - 2475017890416*y + 88807125936)/(y-2)^35, where y=A000108(x).

A288277 a(n) is the number of rooted maps with n edges and 7 faces on an orientable surface of genus 4.

Original entry on oeis.org

17302190625720, 2089035241981688, 123981042854132536, 4892650539994184868, 145737674581607574840, 3515647035511186627416, 71823371612912533887168, 1281537868340178808063824, 20423544863369526066131328, 295680368360952875467454880, 3940377769373862621216994864
Offset: 14

Views

Author

Gheorghe Coserea, Jun 08 2017

Keywords

Crossrefs

Rooted maps of genus 4 with n edges and f faces for 1<=f<=10: A288271 f=1, A288272 f=2, A288273 f=3, A288274 f=4, A288275 f=5, A288276 f=6, this sequence, A288278 f=8, A288279 f=9, A288280 f=10.
Column 7 of A269924.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 7, 4];
    Table[a[n], {n, 14, 24}] (* Jean-François Alcover, Oct 16 2018 *)

Formula

G.f.: -4*y*(y-1)^14*(18995313191166*y^13 + 602583747147072*y^12 + 3880832501643076*y^11 + 259447266126966*y^10 - 24577880734142257*y^9 + 10075843752456953*y^8 + 45406701745704921*y^7 - 44360505974166179*y^6 - 5860774604042624*y^5 + 22759971294835512*y^4 - 8598423383057104*y^3 - 18688742922288*y^2 + 464831946526080*y - 48608581644864)/(y-2)^41, where y=A000108(x).
Showing 1-10 of 13 results. Next