cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A342981 Triangle read by rows: T(n,k) is the number of rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 7, 5, 0, 1, 16, 37, 14, 0, 1, 30, 150, 176, 42, 0, 1, 50, 449, 1104, 794, 132, 0, 1, 77, 1113, 4795, 7077, 3473, 429, 0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430, 0, 1, 156, 4788, 47832, 189183, 319320, 228810, 63004, 4862
Offset: 0

Views

Author

Andrew Howroyd, Apr 02 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, column k is a polynomial of degree 3*(k-2). This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.
By duality, also the number of loopless rooted planar maps with n edges and k vertices.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,   2;
  0, 1,   7,    5;
  0, 1,  16,   37,    14;
  0, 1,  30,  150,   176,    42;
  0, 1,  50,  449,  1104,   794,   132;
  0, 1,  77, 1113,  4795,  7077,  3473,   429;
  0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430;
  ...
		

Crossrefs

Columns k=3..4 are A005581, A006468.
Diagonals are A000108, A006419, A006420, A006421.
Row sums are A000260.

Programs

  • Mathematica
    G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
    H[n_] := With[{g = 1 + x*y + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
    CoefficientList[#, y]& /@ CoefficientList[H[10], x] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
  • PARI
    \\ here G(n, y) gives A082680 as g.f.
    G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
    H(n)={my(g=1+x*y+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

G.f. A(x,y) satisfies A(x) = G(x*A(x,y)^2, y) where G(x,y) = 1 + x*y + x*B(x,y) and B(x,y) is the g.f. of A082680.
A027836(n+1) = Sum_{k=1..n+1} k*T(n,k).
A002293(n) = Sum_{k=1..n+1} k*T(n,n+2-k).

A277741 Array read by antidiagonals: A(n,k) is the number of unsensed planar maps with n vertices and k faces, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 13, 20, 13, 3, 6, 35, 83, 83, 35, 6, 12, 104, 340, 504, 340, 104, 12, 27, 315, 1401, 2843, 2843, 1401, 315, 27, 65, 1021, 5809, 15578, 21420, 15578, 5809, 1021, 65, 175, 3407, 24299, 82546, 149007, 149007, 82546, 24299, 3407, 175
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2016

Keywords

Comments

A(n,k) is also the number of multiquadrangulations of the sphere with n stable equilibria and k unstable equilibria.
From Andrew Howroyd, Jan 13 2025: (Start)
The planar maps considered are connected and may contain loops and parallel edges.
The number of edges is n + k - 2. (End)

Examples

			The array begins:
   1,    1,    1,     2,     3,     6,   12,   27, 65, ...
   1,    2,    5,    13,    35,   104,  315, 1021, ...
   1,    5,   20,    83,   340,  1401, 5809, ...
   2,   13,   83,   504,  2843, 15578, ...
   3,   35,  340,  2843, 21420, ...
   6,  104, 1401, 15578, ...
  12,  315, 5809, ...
  27, 1021, ...
  65, ...
  ...
As a triangle, rows give the number of edges (first row is 0 edges):
   1;
   1,    1;
   1,    2,    1;
   2,    5,    5,     2;
   3,   13,   20,    13,     3;
   6,   35,   83,    83,    35,    6;
  12,  104,  340,   504,   340,   104,   12;
  27,  315, 1401,  2843,  2843,  1401,  315,   27;
  65, 1021, 5809, 15578, 21420, 15578, 5809, 1021, 65;
  ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, chapter 5.

Crossrefs

Antidiagonal sums are A006385.
Rows 1..2 (equally, columns 1..2) are A006082, A380239.
Cf. A269920 (rooted), A379430 (sensed), A379431 (achiral), A379432 (2-connected), A384963 (simple).

Formula

A(n,k) = A(k,n).
A(n,k) = (A379430(n,k) + A379431(n,k))/2. - Andrew Howroyd, Jan 14 2025

Extensions

Missing terms inserted and definition edited by Andrew Howroyd, Jan 13 2025

A342980 Triangle read by rows: T(n,k) is the number of rooted loopless planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 8, 1, 0, 0, 1, 20, 20, 1, 0, 0, 1, 38, 131, 38, 1, 0, 0, 1, 63, 469, 469, 63, 1, 0, 0, 1, 96, 1262, 3008, 1262, 96, 1, 0, 0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0, 0, 1, 190, 5780, 42602, 83088, 42602, 5780, 190, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 01 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, columns k without the initial zero term is a polynomial of degree 3*(k-2). This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

Examples

			Triangle begins:
  1;
  0, 0;
  0, 1,   0;
  0, 1,   1,    0;
  0, 1,   8,    1,     0;
  0, 1,  20,   20,     1,     0;
  0, 1,  38,  131,    38,     1,    0;
  0, 1,  63,  469,   469,    63,    1,   0;
  0, 1,  96, 1262,  3008,  1262,   96,   1, 0;
  0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0;
  ...
		

Crossrefs

Columns (and diagonals) are A006416, A006417, A006418.
Row sums are A099553(n+1).

Programs

  • Mathematica
    G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
    H[n_] := With[{g = 1 + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
    Join[{{1}, {0, 0}}, Append[CoefficientList[#, y], 0]& /@ CoefficientList[ H[11], x][[3;;]]] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
  • PARI
    \\ here G(n,y) gives A082680 as g.f.
    G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
    H(n)={my(g=1+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

T(n,n+2-k) = T(n,k).
G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2,y) where G(x,y) = 1 + x*B(x,y) and B(x,y) is the g.f. of A082680.

A379430 Array read by antidiagonals: A(n,k) is the number of sensed planar maps with n vertices and k faces, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 14, 23, 14, 3, 6, 42, 108, 108, 42, 6, 14, 140, 501, 761, 501, 140, 14, 34, 473, 2264, 4744, 4744, 2264, 473, 34, 95, 1670, 10087, 27768, 38495, 27768, 10087, 1670, 95, 280, 5969, 44310, 153668, 279698, 279698, 153668, 44310, 5969, 280
Offset: 1

Views

Author

Andrew Howroyd, Jan 13 2025

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges.
The number of edges is n + k - 2.

Examples

			Array begins:
=========================================================
n\k |  1    2     3      4      5      6      7     8 ...
----+----------------------------------------------------
  1 |  1    1     1      2      3      6     14    34 ...
  2 |  1    2     5     14     42    140    473  1670 ...
  3 |  1    5    23    108    501   2264  10087 44310 ...
  4 |  2   14   108    761   4744  27768 153668 ...
  5 |  3   42   501   4744  38495 279698 ...
  6 |  6  140  2264  27768 279698 ...
  7 | 14  473 10087 153668 ...
  8 | 34 1670 44310 ...
   ...
As a triangle, rows give the number of edges (first row is 0 edges):
   1;
   1,    1;
   1,    2,     1;
   2,    5,     5,     2;
   3,   14,    23,    14,     3;
   6,   42,   108,   108,    42,     6;
  14,  140,   501,   761,   501,   140,    14;
  34,  473,  2264,  4744,  4744,  2264,   473,   34;
  95, 1670, 10087, 27768, 38495, 27768, 10087, 1670, 95;
  ...
		

Crossrefs

Antidiagonal sums are A006384.
Columns 1..2 are A002995, A380237.
Cf. A269920 (rooted), A277741 (unsensed), A379431 (achiral), A342061 (2-connected), A384964 (simple).

Formula

A(n,k) = A(k,n).

A342982 Triangle read by rows: T(n,k) is the number of tree-rooted planar maps with n edges and k+1 faces, n >= 0, k = 0..n.

Original entry on oeis.org

1, 1, 1, 2, 6, 2, 5, 30, 30, 5, 14, 140, 280, 140, 14, 42, 630, 2100, 2100, 630, 42, 132, 2772, 13860, 23100, 13860, 2772, 132, 429, 12012, 84084, 210210, 210210, 84084, 12012, 429, 1430, 51480, 480480, 1681680, 2522520, 1681680, 480480, 51480, 1430
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2021

Keywords

Comments

The number of vertices is n + 1 - k.
A tree-rooted planar map is a planar map with a distinguished spanning tree.

Examples

			Triangle begins:
    1;
    1,     1;
    2,     6,     2;
    5,    30,    30,      5;
   14,   140,   280,    140,     14;
   42,   630,  2100,   2100,    630,    42;
  132,  2772, 13860,  23100,  13860,  2772,   132;
  429, 12012, 84084, 210210, 210210, 84084, 12012, 429;
  ...
		

Crossrefs

Columns k=0..2 are A000108, A002457, 2*A002803.
Row sums are A005568.
Central coefficients are A342983.

Programs

  • Mathematica
    Table[(2 n)!/(k!*(k + 1)!*(n - k)!*(n - k + 1)!), {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 06 2021 *)
  • PARI
    T(n,k) = {(2*n)!/(k!*(k+1)!*(n-k)!*(n-k+1)!)}
    { for(n=0, 10, print(vector(n+1, k, T(n,k-1)))) }

Formula

T(n,k) = (2*n)!/(k!*(k+1)!*(n-k)!*(n-k+1)!).
T(n,n-k) = T(n,k).
T(n, floor(n/2)) = A215288(n).
T(n,k) = A000108(n) * A001263(n+1,k+1). - Werner Schulte, Apr 04 2021

A000184 Number of genus 0 rooted maps with 3 faces with n vertices.

Original entry on oeis.org

2, 22, 164, 1030, 5868, 31388, 160648, 795846, 3845020, 18211380, 84876152, 390331292, 1775032504, 7995075960, 35715205136, 158401506118, 698102372988, 3059470021316, 13341467466520, 57918065919924, 250419305769512, 1078769490401032, 4631680461623664, 19825379450255900, 84622558822506328, 360270317908904328, 1530148541536781488, 6484511936352543096, 27423786092731382000, 115756362341775227888
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Crossrefs

Column 3 of A269920.
Column 0 of A270407.

Programs

  • Magma
    [n*((n+1)*(n+2)*Catalan(n+1) - 3*4^n)/12: n in [2..30]]; // G. C. Greubel, Jul 18 2024
    
  • Mathematica
    a[n_] := 1/12*(2^(n+1)*(2*n+1)!!/(n-1)!-3*4^n*n); Table[a[n], {n, 2, 31}] (* Jean-François Alcover, Mar 12 2014 *)
  • SageMath
    [n*(2*(2*n+1)*binomial(2*n,n) - 3*4^n)//12 for n in range(2,30)] # G. C. Greubel, Jul 18 2024

Formula

a(n) = 2 * A029887(n-2). - Ralf Stephan, Aug 17 2004
a(n) = 4^n*Gamma(n+3/2)/(3*sqrt(Pi)*Gamma(n)) - n*4^(n-1). - Mark van Hoeij, Jul 06 2010
From G. C. Greubel, Jul 18 2024: (Start)
a(n) = (n/12)*( (n+1)*(n+2)*Catalan(n+1) - 3*4^n ).
G.f.: x*(1 - sqrt(1 - 4*x))/(1-4*x)^(5/2).
E.g.f.: (x/3)*exp(2*x)*( - 3*exp(2*x) + 3*(1+2*x)*BesselI(0, 2*x) + (3+8*x)*BesselI(1, 2*x) + 2*x*BesselI(2, 2*x) ). (End)

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A379431 Array read by antidiagonals: A(n,k) is the number of achiral planar maps with n vertices and k faces, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 5, 5, 2, 3, 12, 17, 12, 3, 6, 28, 58, 58, 28, 6, 10, 68, 179, 247, 179, 68, 10, 20, 157, 538, 942, 942, 538, 157, 20, 35, 372, 1531, 3388, 4345, 3388, 1531, 372, 35, 70, 845, 4288, 11424, 18316, 18316, 11424, 4288, 845, 70
Offset: 1

Views

Author

Andrew Howroyd, Jan 14 2025

Keywords

Comments

The planar maps considered are connected and may contain loops and parallel edges.
The number of edges is n + k - 2.

Examples

			==================================================
n\k |  1   2    3     4     5     6     7    8 ...
----+---------------------------------------------
  1 |  1   1    1     2     3     6    10   20 ...
  2 |  1   2    5    12    28    68   157  372 ...
  3 |  1   5   17    58   179   538  1531 4288 ...
  4 |  2  12   58   247   942  3388 11424 ...
  5 |  3  28  179   942  4345 18316 ...
  6 |  6  68  538  3388 18316 ...
  7 | 10 157 1531 11424 ...
  8 | 20 372 4288 ...
  ...
As a triangle, rows give the number of edges (first row is 0 edges):
   1;
   1,   1;
   1,   2,    1;
   2,   5,    5,   2;
   3,  12,   17,   12,    3;
   6,  28,   58,   58,   28,    6;
  10,  68,  179,  247,  179,   68,   10;
  20, 157,  538,  942,  942,  538,  157,  20;
  35, 372, 1531, 3388, 4345, 3388, 1531, 372, 35;
  ...
		

Crossrefs

Antidiagonal sums are A006443.
Column 1 is A210736(n-1).
Cf. A269920 (rooted), A277741 (unsensed), A379430 (sensed).

Formula

A(n,k) = A(k,n).

A000365 Number of genus 0 rooted planar maps with 4 faces and n vertices.

Original entry on oeis.org

5, 93, 1030, 8885, 65954, 442610, 2762412, 16322085, 92400330, 505403910, 2687477780, 13957496098, 71053094420, 355548314180, 1752827693528, 8529176056965, 41026491589722, 195327793313790, 921451498774660, 4311086414580022, 20019238138410940
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Crossrefs

Column 4 of A269920.
Column 0 of A270408.

Programs

  • Mathematica
    nn = 20; CoefficientList[Series[x^2 (1 - Sqrt[1 - 4 x]) (7 + 4 x - 2 Sqrt[1 - 4 x])/(2 (4 x - 1)^4), {x, 0, nn}], x] (* T. D. Noe, Jun 19 2012 *)
  • PARI
    seq(n)={my(g=sqrt(1-4*x + O(x*x^n))); Vec((1-g)*(7+4*x-2*g)/(2*(1-4*x)^4))} \\ Andrew Howroyd, Mar 27 2021

Formula

G.f.: x^2*(1-sqrt(1-4*x))*(7+4*x-2*sqrt(1-4*x))/(2*(4*x-1)^4). - corrected for right offset by Vaclav Kotesovec, Aug 13 2013
a(n) ~ n^3*4^n/24 * (1-4/(sqrt(Pi*n))). - Vaclav Kotesovec, Aug 13 2013

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A380241 Array read by antidiagonals: T(n,k) is the number of rooted (2k)-regular planar maps with n vertices, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 9, 1, 1, 1, 14, 100, 54, 1, 1, 1, 42, 1225, 3000, 378, 1, 1, 1, 132, 15876, 171500, 110000, 2916, 1, 1, 1, 429, 213444, 10001880, 30012500, 4550000, 24057, 1, 1, 1, 1430, 2944656, 591666768, 7981500240, 5987493750, 204000000, 208494, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 22 2025

Keywords

Comments

The zeroth column is included by convention only for consistency with the first row sequences.
The case for regular planar maps of odd valency is more complicated and without simple closed form formulas, so not presented in this sequence. See the references for additional information.

Examples

			Array begins:
====================================================================
n\k | 0  1      2          3               4                   5 ...
----+---------------------------------------------------------------
  0 | 1  1      1          1               1                   1 ...
  1 | 1  1      2          5              14                  42 ...
  2 | 1  1      9        100            1225               15876 ...
  3 | 1  1     54       3000          171500            10001880 ...
  4 | 1  1    378     110000        30012500          7981500240 ...
  5 | 1  1   2916    4550000      5987493750       7304332956480 ...
  6 | 1  1  24057  204000000   1302227368750    7310748066293952 ...
  7 | 1  1 208494 9690000000 301107909375000 7794097754539041792 ...
  ...
		

Crossrefs

Columns 0..3 are A000012 twice, A000168, A380242.
Rows 0..3 are A000012, A000108, A060150, A380243.
Cf. A269920.

Programs

  • PARI
    T(n,k)=if(k==0, 1, 2*binomial(2*k-1,k)^n*(n*k)!/(n!*(n*k - n + 2)!))

Formula

T(n,k) = 2*binomial(2*k-1, k)^n*(n*k)!/(n!*(n*k - n + 2)!) for k > 0.

A000473 Number of genus 0 rooted maps with 5 faces and n vertices.

Original entry on oeis.org

14, 386, 5868, 65954, 614404, 5030004, 37460376, 259477218, 1697186964, 10596579708, 63663115880, 370293754740, 2095108370600, 11574690111400, 62629794691632, 332742342741090, 1739371969822260, 8961709528660140, 45576855706440520, 229087231033907708
Offset: 4

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Crossrefs

Column 5 of A269920.
Column 0 of A270409.

Programs

  • Mathematica
    CoefficientList[(1/x)(1-Sqrt[1-4x])(17+16x-(10+4x)Sqrt[1-4x])/(1-4x)^(11/2) + O[x]^36, x] (* Jean-François Alcover, Feb 08 2016 *)
  • PARI
    seq(n)={my(g=sqrt(1-4*x + O(x*x^n))); Vec((1-g)*(17+16*x-(10+4*x)*g)/((1-4*x)^5*g))} \\ Andrew Howroyd, Mar 28 2021

Formula

G.f.: x^3*(1-sqrt(1-4*x))*(17+16*x-(10+4*x)*sqrt(1-4*x))/(1-4*x)^(11/2). - Sean A. Irvine, Nov 14 2010

Extensions

More terms from Sean A. Irvine, Nov 14 2010
Showing 1-10 of 13 results. Next