A003085
Number of weakly connected digraphs with n unlabeled nodes.
Original entry on oeis.org
1, 2, 13, 199, 9364, 1530843, 880471142, 1792473955306, 13026161682466252, 341247400399400765678, 32522568098548115377595264, 11366712907233351006127136886487, 14669074325902449468573755897547924182
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 124 and 241.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Keith Briggs, Table of n, a(n) for n = 1..64
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Alexander G. Ginsberg, Firing-Rate Models in Computational Neuroscience: New Applications and Methodologies, Ph. D. Dissertation, Univ. Michigan, 2023. See p. 7.
- Martin Golubitsky and Yangyang Wang, Infinitesimal homeostasis in three-node input-output networks, Journal of Mathematical Biology (2020) Vol. 80, 1163-1185.
- A. Iványi, Leader election in synchronous networks, Acta Univ. Sapientiae, Mathematica, 5, 2 (2013) 54-82.
- X. Li, D. S. Stones, H. Wang, H. Deng, X. Liu and G. Wang, NetMODE: Network Motif Detection without Nauty, PLoS ONE 7(12): e50093. doi:10.1371/journal.pone.0050093. - From _N. J. A. Sloane_, Feb 02 2013
- Eric Weisstein's World of Mathematics, Weakly Connected Digraph
-
# The function EulerInvTransform is defined in A358451.
a := EulerInvTransform(A000273):
seq(a(n), n = 1..13); # Peter Luschny, Nov 21 2022
-
Needs["Combinatorica`"]; d[n_] := GraphPolynomial[n, x, Directed] /. x -> 1; max = 13; se = Series[ Sum[a[n]*x^n/n, {n, 1, max}] - Log[1 + Sum[ d[n]*x^n, {n, 1, max}]], {x, 0, max}]; sol = SolveAlways[ se == 0, x]; Do[ A003084[n] = a[n] /. sol[[1]], {n, 1, max}]; ClearAll[a, d]; a[n_] := (1/n)*Sum[ MoebiusMu[ n/d ] * A003084[d], {d, Divisors[n]} ]; Table[ a[n], {n, 1, max}] (* Jean-François Alcover, Feb 01 2012, after formula *)
terms = 13;
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v - 1];
d[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]} ]; s/n!);
A003084 = CoefficientList[Log[Sum[d[n] x^n, {n, 0, terms+1}]] + O[x]^(terms + 1), x] Range[0, terms] // Rest;
a[n_] := (1/n)*Sum[MoebiusMu[n/d] * A003084[[d]], {d, Divisors[n]}];
Table[a[n], {n, 1, terms}] (* Jean-François Alcover, Aug 30 2019, after Andrew Howroyd in A003084 *)
-
from functools import lru_cache
from itertools import product, combinations
from fractions import Fraction
from math import prod, gcd, factorial
from sympy import mobius, divisors
from sympy.utilities.iterables import partitions
def A003085(n):
@lru_cache(maxsize=None)
def b(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 05 2024
A062735
Triangular array T(n,k) giving number of weakly connected digraphs with n labeled nodes and k arcs (n >= 1, 0 <= k <= n(n-1)).
Original entry on oeis.org
1, 0, 2, 1, 0, 0, 12, 20, 15, 6, 1, 0, 0, 0, 128, 432, 768, 920, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 2000, 11104, 33880, 73480, 123485, 166860, 184426, 167900, 125965, 77520, 38760, 15504, 4845, 1140, 190, 20, 1, 0, 0, 0, 0, 0, 41472, 337920, 1536000, 5062080
Offset: 1
1;
0, 2, 1;
0, 0, 12, 20, 15, 6, 1;
0, 0, 0, 128, 432, 768, 920, 792, 495, 220, 66, 12, 1;
0, 0, 0, 0, 2000, 11104, 33880, 73480, 123485, 166860, 184426, 167900, ...;
0, 0, 0, 0, 0, 41472, 337920,1536000,5062080,.. ;
0, 0, 0, 0, 0, 0, 1075648,...
-
nn=7;s=Sum[(1+y)^(n^2-n) x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[Log[ s]+1,{x,0,nn}],{x,y}]//Grid (* returns triangle indexed from n = 0, Geoffrey Critzer, Oct 07 2012 *)
-
row(n)={Vecrev(n!*polcoef(1 + log(sum(k=0, n, (1+y)^(k*(k-1))*x^k/k!, O(x*x^n))), n))}
{ for(n=0, 5, print(row(n))) } \\ Andrew Howroyd, Jan 11 2022
A003028
Number of digraphs on n labeled nodes with a source.
Original entry on oeis.org
1, 3, 51, 3614, 991930, 1051469032, 4366988803688, 71895397383029040, 4719082081411731363408, 1237678715644664931691596416, 1297992266840866792981316221144960, 5444416466164313011147841248189209354496, 91343356480627224177654291875698256656613808896
Offset: 1
- V. Jovovic and G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996) 237-247.
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A054941
Number of weakly connected oriented graphs on n labeled nodes.
Original entry on oeis.org
1, 2, 20, 624, 55248, 13982208, 10358360640, 22792648882176, 149888345786341632, 2952810709943411146752, 174416705255313941476193280, 30901060796613886817249881227264, 16422801513633911416125344647746244608, 26183660776604240464418800095675915958222848
Offset: 1
-
m:=30;
f:= func< x | (&+[3^Binomial(n,2)*x^n/Factorial(n) : n in [0..m+3]]) >;
R:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( Log(f(x)) ))); // G. C. Greubel, Apr 28 2023
-
nn=20; s=Sum[3^Binomial[n,2]x^n/n!,{n,0,nn}];
Drop[Range[0,nn]! CoefficientList[Series[Log[s]+1,{x,0,nn}],x],1] (* Geoffrey Critzer, Oct 22 2012 *)
-
N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, 3^binomial(k, 2)*x^k/k!)))) \\ Seiichi Manyama, May 18 2019
-
m=30
def f(x): return sum(3^binomial(n,2)*x^n/factorial(n) for n in range(m+4))
def A054941_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( log(f(x)) ).egf_to_ogf().list()
a=A054941_list(40); a[1:] # G. C. Greubel, Apr 28 2023
A062738
Number of connected labeled relations.
Original entry on oeis.org
1, 2, 12, 432, 61344, 32866560, 68307743232, 561981464819712, 18437720675374485504, 2417519433343618432696320, 1267602236528793479228867346432, 2658428102191640176274135259655176192, 22300681394917309655766001890404571062206464
Offset: 0
-
a:= n-> n!*coeff(series(1+log(add(2^(i^2)*x^i/i!, i=0..n)), x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, Feb 16 2011
-
nn = 20; a = Sum[2^(n^2) x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[Log[a] + 1, {x, 0, nn}], x] (* Geoffrey Critzer, Oct 17 2011 *)
-
v=Vec(1+log(sum(n=0,10,2^(n^2)*x^n/n!)));for(i=1,#v,v[i]*=(i-1)!);v \\ Charles R Greathouse IV, Feb 14 2011
A049524
Number of digraphs with a source and a sink on n labeled nodes.
Original entry on oeis.org
1, 3, 48, 3424, 962020, 1037312116, 4344821892264, 71771421308713624, 4716467927380427847264, 1237465168798883061207535456, 1297923989772809185944542332007104, 5444330658513426322624322033259452670016, 91342931436147421630261703458729460990513248512
Offset: 1
- V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 244.
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- Sean A. Irvine, Java program (github)
- V. Jovovic and G. Kilibarda, Enumeration of labeled quasi-initially connected digraphs, Discrete Math., 224 (2000), 151-163.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
A003029
Number of unilaterally connected digraphs with n labeled nodes.
Original entry on oeis.org
1, 3, 48, 3400, 955860, 1034141596, 4340689156440, 71756043154026904, 4716284688998245793376, 1237457313794197125403483936, 1297922676419612772784598299454784, 5444329780242560941321703550018388707904, 91342929096228825123968637168641318872709897472
Offset: 1
- V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), 237-247.
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A049414
Number of quasi-initially connected digraphs with n labeled nodes.
Original entry on oeis.org
1, 3, 54, 3804, 1022320, 1065957628, 4389587378792, 72020744942708040, 4721708591209396542528, 1237892622263984613044109216, 1298060581376190776821670648395840
Offset: 1
A189898
Triangular array read by rows. T(n,k) is the number of digraphs with n labeled nodes having exactly k undirected (or weak) components, n >= 1, 1 <= k <= n.
Original entry on oeis.org
1, 3, 1, 54, 9, 1, 3834, 243, 18, 1, 1027080, 20790, 675, 30, 1, 1067308488, 6364170, 67635, 1485, 45, 1, 4390480193904, 7543111716, 23031540, 171045, 2835, 63, 1, 72022346388181584, 35217115838604, 30469951764, 63580545, 370440, 4914, 84, 1
Offset: 1
1
3 1
54 9 1
3834 243 18 1
1027080 20790 675 30 1
-
T:= (n, k)-> coeff(series(log(add(2^(i^2-i) *x^i/i!, i=0..n))^k /k!,
x, n+1), x, n) *n!:
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, May 01 2011
-
a= Sum[4^Binomial[n,2]x^n/n!,{n,0,10}];
Transpose[Map[Drop[#, 1] &,Table[Range[0, 10]! CoefficientList[Series[Log[a]^n/n!, {x, 0, 10}], x], {n, 1, 10}]]] // Grid
-
# uses[bell_matrix from A264428, A003027]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
bell_matrix(lambda n: A003027(n+1), 10) # Peter Luschny, Jan 18 2016
A054593
Number of disconnected labeled digraphs with n nodes.
Original entry on oeis.org
0, 1, 10, 262, 21496, 6433336, 7566317200, 35247649746352, 648839620390462336, 47230175230392839683456, 13617860445102311268975051520, 15577054031612736747163633737901312
Offset: 1
Showing 1-10 of 17 results.
Comments