cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A003085 Number of weakly connected digraphs with n unlabeled nodes.

Original entry on oeis.org

1, 2, 13, 199, 9364, 1530843, 880471142, 1792473955306, 13026161682466252, 341247400399400765678, 32522568098548115377595264, 11366712907233351006127136886487, 14669074325902449468573755897547924182
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 124 and 241.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A054733.
Column sums of A350789.
The labeled case is A003027.
Cf. A000273, A003084, A035512 (strongly connected).

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(A000273):
    seq(a(n), n = 1..13); # Peter Luschny, Nov 21 2022
  • Mathematica
    Needs["Combinatorica`"]; d[n_] := GraphPolynomial[n, x, Directed] /. x -> 1; max = 13; se = Series[ Sum[a[n]*x^n/n, {n, 1, max}] - Log[1 + Sum[ d[n]*x^n, {n, 1, max}]], {x, 0, max}]; sol = SolveAlways[ se == 0, x]; Do[ A003084[n] = a[n] /. sol[[1]], {n, 1, max}]; ClearAll[a, d]; a[n_] := (1/n)*Sum[ MoebiusMu[ n/d ] * A003084[d], {d, Divisors[n]} ]; Table[ a[n], {n, 1, max}] (* Jean-François Alcover, Feb 01 2012, after formula *)
    terms = 13;
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v - 1];
    d[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]} ]; s/n!);
    A003084 = CoefficientList[Log[Sum[d[n] x^n, {n, 0, terms+1}]] + O[x]^(terms + 1), x] Range[0, terms] // Rest;
    a[n_] := (1/n)*Sum[MoebiusMu[n/d] * A003084[[d]], {d, Divisors[n]}];
    Table[a[n], {n, 1, terms}] (* Jean-François Alcover, Aug 30 2019, after Andrew Howroyd in A003084 *)
  • Python
    from functools import lru_cache
    from itertools import product, combinations
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A003085(n):
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 05 2024

Formula

a(n) = (1/n)*Sum_{d|n} mu(n/d)*A003084(d), where mu is Moebius function.
Inverse Euler transform of A000273. - Andrew Howroyd, Dec 27 2021

Extensions

More terms from Vladeta Jovovic, Jan 09 2000

A062735 Triangular array T(n,k) giving number of weakly connected digraphs with n labeled nodes and k arcs (n >= 1, 0 <= k <= n(n-1)).

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 12, 20, 15, 6, 1, 0, 0, 0, 128, 432, 768, 920, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 2000, 11104, 33880, 73480, 123485, 166860, 184426, 167900, 125965, 77520, 38760, 15504, 4845, 1140, 190, 20, 1, 0, 0, 0, 0, 0, 41472, 337920, 1536000, 5062080
Offset: 1

Views

Author

Vladeta Jovovic, Jul 12 2001

Keywords

Examples

			1;
0, 2, 1;
0, 0, 12, 20,   15,    6,      1;
0, 0, 0, 128,  432,  768,    920,    792,    495,    220,     66,    12, 1;
0, 0, 0,   0, 2000, 11104, 33880,  73480, 123485, 166860, 184426, 167900, ...;
0, 0, 0,   0,    0, 41472, 337920,1536000,5062080,.. ;
0, 0, 0,   0,    0,     0, 1075648,...
		

Crossrefs

Cf. A003027 (row sums), A054733 (unlabeled case), A057273 (strongly connected), A097629 (diagonal), A123554 (not necessarily connected).

Programs

  • Mathematica
    nn=7;s=Sum[(1+y)^(n^2-n) x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[Log[ s]+1,{x,0,nn}],{x,y}]//Grid  (* returns triangle indexed from n = 0, Geoffrey Critzer, Oct 07 2012 *)
  • PARI
    row(n)={Vecrev(n!*polcoef(1 + log(sum(k=0, n, (1+y)^(k*(k-1))*x^k/k!, O(x*x^n))), n))}
    { for(n=0, 5, print(row(n))) } \\ Andrew Howroyd, Jan 11 2022

Formula

E.g.f.: 1+log( Sum_{n >= 0, k >= 0} binomial(n*(n-1), k)*x^n/n!*y^k ).

A003028 Number of digraphs on n labeled nodes with a source.

Original entry on oeis.org

1, 3, 51, 3614, 991930, 1051469032, 4366988803688, 71895397383029040, 4719082081411731363408, 1237678715644664931691596416, 1297992266840866792981316221144960, 5444416466164313011147841248189209354496, 91343356480627224177654291875698256656613808896
Offset: 1

Views

Author

Keywords

Comments

Here a source is a node that is connected by a directed path to every other node in the digraph (but does not necessarily have indegree zero). - Geoffrey Critzer, Apr 14 2023

References

  • V. Jovovic and G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996) 237-247.
  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The unlabeled version is A051421.
Row sums of A057274.
Column k=1 of A361579.

Programs

Extensions

Corrected and extended by Vladeta Jovovic, Goran Kilibarda
Terms a(12) and beyond from Andrew Howroyd, Jan 11 2022

A054941 Number of weakly connected oriented graphs on n labeled nodes.

Original entry on oeis.org

1, 2, 20, 624, 55248, 13982208, 10358360640, 22792648882176, 149888345786341632, 2952810709943411146752, 174416705255313941476193280, 30901060796613886817249881227264, 16422801513633911416125344647746244608, 26183660776604240464418800095675915958222848
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Comments

The triangle of oriented labeled graphs on n>=1 nodes with 1<=k<=n components and row sums A047656 starts:
1;
2, 1;
20, 6, 1;
624, 92, 12, 1;
55248, 3520, 260, 20, 1;
13982208, 354208, 11880, 580, 30, 1; - R. J. Mathar, Apr 29 2019

Crossrefs

Row sums of A350732.
The unlabeled version is A086345.
Cf. A001187 (graphs), A003027 (digraphs), A350730 (strongly connected).

Programs

  • Magma
    m:=30;
    f:= func< x | (&+[3^Binomial(n,2)*x^n/Factorial(n) : n in [0..m+3]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( Log(f(x)) ))); // G. C. Greubel, Apr 28 2023
    
  • Mathematica
    nn=20; s=Sum[3^Binomial[n,2]x^n/n!,{n,0,nn}];
    Drop[Range[0,nn]! CoefficientList[Series[Log[s]+1,{x,0,nn}],x],1] (* Geoffrey Critzer, Oct 22 2012 *)
  • PARI
    N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, 3^binomial(k, 2)*x^k/k!)))) \\ Seiichi Manyama, May 18 2019
    
  • SageMath
    m=30
    def f(x): return sum(3^binomial(n,2)*x^n/factorial(n) for n in range(m+4))
    def A054941_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( log(f(x)) ).egf_to_ogf().list()
    a=A054941_list(40); a[1:] # G. C. Greubel, Apr 28 2023

Formula

E.g.f.: log( Sum_{n >= 0} 3^binomial(n, 2)*x^n/n! ). - Vladeta Jovovic, Feb 14 2003

Extensions

More terms from Vladeta Jovovic, Feb 14 2003

A062738 Number of connected labeled relations.

Original entry on oeis.org

1, 2, 12, 432, 61344, 32866560, 68307743232, 561981464819712, 18437720675374485504, 2417519433343618432696320, 1267602236528793479228867346432, 2658428102191640176274135259655176192, 22300681394917309655766001890404571062206464
Offset: 0

Views

Author

Vladeta Jovovic, Jul 12 2001

Keywords

Comments

a(n) is the number of binary relations R on {1, 2, ..., n} such that the reflexive, symmetric, and transitive closure of R is the trivial relation.

Crossrefs

Cf. A003027.

Programs

  • Maple
    a:= n-> n!*coeff(series(1+log(add(2^(i^2)*x^i/i!, i=0..n)), x, n+1), x, n):
    seq(a(n), n=0..30); # Alois P. Heinz, Feb 16 2011
  • Mathematica
    nn = 20; a = Sum[2^(n^2) x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[Log[a] + 1, {x, 0, nn}], x] (* Geoffrey Critzer, Oct 17 2011 *)
  • PARI
    v=Vec(1+log(sum(n=0,10,2^(n^2)*x^n/n!)));for(i=1,#v,v[i]*=(i-1)!);v \\ Charles R Greathouse IV, Feb 14 2011

Formula

E.g.f.: 1+log( Sum_{n >= 0} 2^(n^2)*x^n/n! ).

A049524 Number of digraphs with a source and a sink on n labeled nodes.

Original entry on oeis.org

1, 3, 48, 3424, 962020, 1037312116, 4344821892264, 71771421308713624, 4716467927380427847264, 1237465168798883061207535456, 1297923989772809185944542332007104, 5444330658513426322624322033259452670016, 91342931436147421630261703458729460990513248512
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Comments

Here a source is defined to be a node which has a directed path to all other nodes and a sink to be a node to which all other nodes have a directed path. A digraph with a source and a sink can also be described as initially-finally connected. - Andrew Howroyd, Jan 16 2022

References

  • V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 244.

Crossrefs

The unlabeled version is A049531.
Row sums of A057271.

Programs

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 16 2022

A003029 Number of unilaterally connected digraphs with n labeled nodes.

Original entry on oeis.org

1, 3, 48, 3400, 955860, 1034141596, 4340689156440, 71756043154026904, 4716284688998245793376, 1237457313794197125403483936, 1297922676419612772784598299454784, 5444329780242560941321703550018388707904, 91342929096228825123968637168641318872709897472
Offset: 1

Views

Author

Keywords

References

  • V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), 237-247.
  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The unlabeled version is A003088.
Row sums of A057275.

Programs

Extensions

Corrected and extended by Vladeta Jovovic, Goran Kilibarda
Terms a(12) and beyond from Andrew Howroyd, Jan 11 2022

A049414 Number of quasi-initially connected digraphs with n labeled nodes.

Original entry on oeis.org

1, 3, 54, 3804, 1022320, 1065957628, 4389587378792, 72020744942708040, 4721708591209396542528, 1237892622263984613044109216, 1298060581376190776821670648395840
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Comments

We say that a node v of a digraph is a quasi-source iff for every other node u there exists directed path from u to v or from v to u. A digraph with at least one quasi-source is called quasi-initially connected.

Crossrefs

Row sums of A057272.

Formula

The recurrence formulas are too long to be presented here.

A189898 Triangular array read by rows. T(n,k) is the number of digraphs with n labeled nodes having exactly k undirected (or weak) components, n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 3, 1, 54, 9, 1, 3834, 243, 18, 1, 1027080, 20790, 675, 30, 1, 1067308488, 6364170, 67635, 1485, 45, 1, 4390480193904, 7543111716, 23031540, 171045, 2835, 63, 1, 72022346388181584, 35217115838604, 30469951764, 63580545, 370440, 4914, 84, 1
Offset: 1

Views

Author

Geoffrey Critzer, May 01 2011

Keywords

Comments

The Bell transform of A003027(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			1
3       1
54      9     1
3834    243   18   1
1027080 20790 675  30  1
		

Crossrefs

Column 1 = A003027, row sums = A053763, lower diagonal = A045943.

Programs

  • Maple
    T:= (n, k)-> coeff(series(log(add(2^(i^2-i) *x^i/i!, i=0..n))^k /k!,
                       x, n+1), x, n) *n!:
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, May 01 2011
  • Mathematica
    a= Sum[4^Binomial[n,2]x^n/n!,{n,0,10}];
    Transpose[Map[Drop[#, 1] &,Table[Range[0, 10]! CoefficientList[Series[Log[a]^n/n!, {x, 0, 10}], x], {n, 1, 10}]]] // Grid
  • Sage
    # uses[bell_matrix from A264428, A003027]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: A003027(n+1), 10) # Peter Luschny, Jan 18 2016

Formula

E.g.f. for column k: log(A(x))^k/k! where A(x) is the e.g.f. for A053763.

Extensions

Name clarified by Andrew Howroyd, Jan 11 2022

A054593 Number of disconnected labeled digraphs with n nodes.

Original entry on oeis.org

0, 1, 10, 262, 21496, 6433336, 7566317200, 35247649746352, 648839620390462336, 47230175230392839683456, 13617860445102311268975051520, 15577054031612736747163633737901312
Offset: 1

Views

Author

Vladeta Jovovic, Apr 15 2000

Keywords

Crossrefs

The unlabeled case is A054590.
Cf. A003027, A053763 (not necessarily connected), A054592.

Formula

a(n) = 2^(n*(n-1)) - A003027(n).
Showing 1-10 of 17 results. Next