A003025
Number of n-node labeled acyclic digraphs with 1 out-point.
Original entry on oeis.org
1, 2, 15, 316, 16885, 2174586, 654313415, 450179768312, 696979588034313, 2398044825254021110, 18151895792052235541515, 299782788128536523836784628, 10727139906233315197412684689421
Offset: 1
a(2) = 2: o-->--o (2 ways)
a(3) = 15: o-->--o-->--o (6 ways) and
o ... o o-->--o
.\ . / . \ . /
. v v ... v v
.. o ..... o
(3 ways) (6 ways)
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
Table[Length[Select[Subsets[Subsets[Range[n]],{n}],Count[#,{}]==1&&Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,4}] (* _Gus Wiseman, Jan 02 2024 *)
-
\\ requires A058876.
my(T=A058876(20)); vector(#T, n, T[n][1]) \\ Andrew Howroyd, Dec 27 2021
-
\\ see Marcel et al. link (formula for a').
seq(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, a[n]=sum(k=1, n-1, (-1)^(k-1) * binomial(n,k) * (2^(n-k)-1)^k * a[n-k])); a} \\ Andrew Howroyd, Jan 01 2022
A051421
Number of digraphs on n unlabeled nodes with a sink (or, with a source).
Original entry on oeis.org
1, 2, 12, 185, 8990, 1505939, 875542491, 1789247738400, 13018820342147705, 341188114831706152794, 32520852428719860881939391, 11366533535523591133597276823755, 14669006027884671703581740693080811331, 70315546525961698601351615055416574931833334
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218 (incorrect version).
- Ronald C. Read, email to N. J. A. Sloane, 28 August, 2000.
a(0)=1 removed and terms a(8) and beyond from
Andrew Howroyd, Jan 21 2022
A049524
Number of digraphs with a source and a sink on n labeled nodes.
Original entry on oeis.org
1, 3, 48, 3424, 962020, 1037312116, 4344821892264, 71771421308713624, 4716467927380427847264, 1237465168798883061207535456, 1297923989772809185944542332007104, 5444330658513426322624322033259452670016, 91342931436147421630261703458729460990513248512
Offset: 1
- V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 244.
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- Sean A. Irvine, Java program (github)
- V. Jovovic and G. Kilibarda, Enumeration of labeled quasi-initially connected digraphs, Discrete Math., 224 (2000), 151-163.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
A057274
Triangle T(n,k) of the number of digraphs with a source on n labeled nodes with k arcs, k=0..n*(n-1).
Original entry on oeis.org
1, 0, 2, 1, 0, 0, 9, 20, 15, 6, 1, 0, 0, 0, 64, 330, 720, 914, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 625, 5804, 24560, 63940, 117310, 164260, 183716, 167780, 125955, 77520, 38760, 15504, 4845, 1140, 190, 20, 1
Offset: 1
Triangle begins:
1;
0, 2, 1;
0, 0, 9, 20, 15, 6, 1;
0, 0, 0, 64, 330, 720, 914, 792, 495, 220, 66, 12, 1;
...
The number of digraphs with a source on 3 labeled nodes is the sum of the terms in row 3, i.e., 0+0+9+20+15+6+1 = 51 = A003028(3).
-
\\ See A057273 for Strong.
Lambda(t, nn, e=2)={my(v=vector(1+nn)); for(n=0, nn, v[1+n] = e^(n*(n+t-1)) - sum(k=0, n-1, binomial(n,k)*e^((n-1)*(n-k))*v[1+k])); v}
Initially(n, e=2)={my(s=Strong(n, e), v=vector(n)); for(k=1, n, my(u=Lambda(k, n-k, e)); for(i=k, n, v[i] += binomial(i,k)*u[1+i-k]*s[k])); v }
row(n)={ Vecrev(Initially(n, 1+'y)[n]) }
{ for(n=1, 5, print(row(n))) } \\ Andrew Howroyd, Jan 11 2022
A003029
Number of unilaterally connected digraphs with n labeled nodes.
Original entry on oeis.org
1, 3, 48, 3400, 955860, 1034141596, 4340689156440, 71756043154026904, 4716284688998245793376, 1237457313794197125403483936, 1297922676419612772784598299454784, 5444329780242560941321703550018388707904, 91342929096228825123968637168641318872709897472
Offset: 1
- V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), 237-247.
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A049414
Number of quasi-initially connected digraphs with n labeled nodes.
Original entry on oeis.org
1, 3, 54, 3804, 1022320, 1065957628, 4389587378792, 72020744942708040, 4721708591209396542528, 1237892622263984613044109216, 1298060581376190776821670648395840
Offset: 1
A350792
Number of digraphs on n labeled nodes with a global source (or sink).
Original entry on oeis.org
1, 2, 24, 1216, 232960, 164069376, 428074336256, 4220285062479872, 160166476125189439488, 23705806454651474422005760, 13794322751716126282614505996288, 31714534285699906476309208596247216128, 288989543377657933541050197425959169851129856
Offset: 1
-
InitiallyV(15) \\ See A350793 for program code.
-
seq(n)={my(v=vector(n)); for(n=1, n, v[n] = n*2^((n-1)^2) - sum(k=1, n-1, binomial(n,k)*2^((n-2)*(n-k))*v[k])); v}
A361579
Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k source-like components, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 51, 12, 1, 0, 3614, 447, 34, 1, 0, 991930, 53675, 2885, 85, 1, 0, 1051469032, 21514470, 741455, 16665, 201, 1, 0, 4366988803688, 30405612790, 642187105, 9816380, 90678, 462, 1, 0, 71895397383029040, 160152273169644, 2024633081100, 19625842425, 122330544, 474138, 1044, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 3, 1;
0, 51, 12, 1;
0, 3614, 447, 34, 1;
0, 991930, 53675, 2885, 85, 1;
...
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
- Wikipedia, Strongly connected component
-
nn = 6; B[n_] := n! 2^Binomial[n, 2]; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]];
ggfz[egfx_] := Normal[Series[egfx, {x, 0, nn}]] /.Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[Series[ggfz[Exp[(u - 1) s[x]]]/ggfz[Exp[- s[x]]], {z, 0, nn}], {z u}] // Grid
A362013
Triangular array read by rows. T(n,k) is the number of labeled directed graphs on [n] with exactly k strongly connected components of size 1 with outdegree zero, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 27, 27, 9, 1, 2401, 1372, 294, 28, 1, 759375, 253125, 33750, 2250, 75, 1, 887503681, 171774906, 13852815, 595820, 14415, 186, 1, 3938980639167, 437664515463, 20841167403, 551353635, 8751645, 83349, 441, 1, 67675234241018881, 4263006881324024, 117484441611292, 1850148686792, 18210124870, 114709448, 451612, 1016, 1
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
1, 2, 1;
27, 27, 9, 1;
2401, 1372, 294, 28, 1;
759375, 253125, 33750, 2250, 75, 1;
...
-
nn = 6; B[n_] := n! 2^Binomial[n, 2] ; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; s[z_] := Total[strong Table[z^i/i!, {i, 1, 58}]];
ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /.Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}]; Table[ Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-s[z]]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}]
Showing 1-9 of 9 results.
Comments