A003028
Number of digraphs on n labeled nodes with a source.
Original entry on oeis.org
1, 3, 51, 3614, 991930, 1051469032, 4366988803688, 71895397383029040, 4719082081411731363408, 1237678715644664931691596416, 1297992266840866792981316221144960, 5444416466164313011147841248189209354496, 91343356480627224177654291875698256656613808896
Offset: 1
- V. Jovovic and G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996) 237-247.
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A361718
Triangular array read by rows. T(n,k) is the number of labeled directed acyclic graphs on [n] with exactly k nodes of indegree 0.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 15, 9, 1, 0, 316, 198, 28, 1, 0, 16885, 10710, 1610, 75, 1, 0, 2174586, 1384335, 211820, 10575, 186, 1, 0, 654313415, 416990763, 64144675, 3268125, 61845, 441, 1, 0, 450179768312, 286992935964, 44218682312, 2266772550, 43832264, 336924, 1016, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 15, 9, 1;
0, 316, 198, 28, 1;
0, 16885, 10710, 1610, 75, 1;
...
Cf.
A000169,
A059201,
A082402,
A088957,
A133686,
A334282,
A350415,
A367904,
A367908,
A368600,
A368601.
-
nn = 8; B[n_] := n! 2^Binomial[n, 2] ;ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-z]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid
nv=4;Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]==1&]],{n,0,nv},{k,0,n}]
A362226
Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k isolated strongly connected components, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 2, 1, 1, 36, 24, 3, 1, 2240, 1762, 87, 6, 1, 462720, 577000, 8630, 215, 10, 1, 332613632, 737645836, 3455820, 26085, 435, 15, 1, 867410804736, 3525456796232, 5166693532, 12154030, 61775, 777, 21, 1, 8503156728135680, 63526200994115056, 28215577119548, 20705805988, 32624585, 125776, 1274, 28, 1
Offset: 0
1;
0, 1;
2, 1, 1;
36, 24, 3, 1;
2240, 1762, 87, 6, 1;
462720, 577000, 8630, 215, 10, 1;
...
-
nn = 8; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
Length@# == 2 &][[All, 2]]; s[z_] := Total[strong Table[z^i/i!, {i, 1, 58}]];
d[z_] := Sum[2^(n (n - 1)) z^n/n!, {n, 0, nn}]; Table[Take[(Table[n!, {n, 0, nn}] CoefficientList[ Series[Exp[(u - 1) s[z]] d[z], {z, 0, nn}], {z, u}])[[i]],
i], {i, 1, nn + 1}] // Grid
Showing 1-3 of 3 results.
Comments