A003028
Number of digraphs on n labeled nodes with a source.
Original entry on oeis.org
1, 3, 51, 3614, 991930, 1051469032, 4366988803688, 71895397383029040, 4719082081411731363408, 1237678715644664931691596416, 1297992266840866792981316221144960, 5444416466164313011147841248189209354496, 91343356480627224177654291875698256656613808896
Offset: 1
- V. Jovovic and G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996) 237-247.
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A049531
Number of digraphs with a source and a sink on n unlabeled nodes.
Original entry on oeis.org
1, 2, 11, 173, 8675, 1483821, 870901739, 1786098545810, 13011539185371716, 341128981258340797839, 32519138088689298538132027, 11366354205366488038532562993809, 14668937734550708660348161757913398001, 70315451107713339843384354196009678853303102
Offset: 1
- V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 246.
A057271
Triangle T(n,k) of number of digraphs with a source and a sink on n labeled nodes and k arcs, k=0,1,..,n*(n-1).
Original entry on oeis.org
1, 0, 2, 1, 0, 0, 6, 20, 15, 6, 1, 0, 0, 0, 24, 234, 672, 908, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 120, 2544, 16880, 55000, 111225, 161660, 183006, 167660, 125945, 77520, 38760, 15504, 4845, 1140, 190, 20, 1
Offset: 1
Triangle starts:
[1] 1;
[2] 0,2,1;
[3] 0,0,6,20,15,6,1;
[4] 0,0,0,24,234,672,908,792,495,220,66,12,1;
...
The number of digraphs with a source and a sink on 3 labeled nodes is 48 = 6+20+15+6+1.
- V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 245.
- Andrew Howroyd, Table of n, a(n) for n = 1..2680 (rows 1..20)
- V. Jovovic and G. Kilibarda, Enumeration of labeled quasi-initially connected digraphs, Discrete Math., 224 (2000), 151-163.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
-
\\ Following Eqn 20 in the Robinson reference.
Z(p,f)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
G(e,p)={Z(p, k->1/e^(k*(k-1)/2))}
U(e,p)={Z(p, k->e^(k*(k-1)/2))}
DigraphEgf(n,e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
StrongD(n,e=2)={-log(U(e, 1/G(e, DigraphEgf(n, e))))}
InitFinally(n, e=2)={my(S=StrongD(n, e)); Vec(serlaplace( S - S^2 + exp(S) * U(e, G(e, S*exp(-S))^2*G(e, DigraphEgf(n,e))) ))}
row(n)={Vecrev(InitFinally(n, 1+'y)[n]) }
{ for(n=1, 5, print(row(n))) } \\ Andrew Howroyd, Jan 16 2022
A003029
Number of unilaterally connected digraphs with n labeled nodes.
Original entry on oeis.org
1, 3, 48, 3400, 955860, 1034141596, 4340689156440, 71756043154026904, 4716284688998245793376, 1237457313794197125403483936, 1297922676419612772784598299454784, 5444329780242560941321703550018388707904, 91342929096228825123968637168641318872709897472
Offset: 1
- V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), 237-247.
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A350790
Number of digraphs on n labeled nodes with a global source and sink.
Original entry on oeis.org
1, 2, 12, 432, 64240, 33904800, 61721081184, 394586260943616, 9146766152111641344, 792073976107698469670400, 261895415169919230764987845120, 335402460348866803020064114666616832, 1678893205649791601327398844631544110815232
Offset: 1
-
nn = 15; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
Length@# == 2 &][[All, 2]]; s[z_] := Total[strong Table[z^i/i!, {i, 1, 58}]];
ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 1, nn + 1}];egf[ggf_] := Normal[Series[ggf, {z, 0, nn}]] /.Table[z^i -> z^i*2^Binomial[i, 2], {i, 1, nn + 1}];Table[n!, {n, 0, nn}] CoefficientList[
Series[z - z^2 + Exp[(u - 1) (v - 1) s[ z]] egf[ggf[z Exp[(u - 1) s[z]]]*1/ggf[Exp[-s[z]]]*ggf[z Exp[(v - 1) s[ z]]]] /. {u -> 0, v -> 0}, {z, 0, nn}], z] (* Geoffrey Critzer, Apr 17 2023 *)
-
InitFinallyV(12) \\ See A350791 for program code.
A165950
Number of acyclic digraphs on n labeled nodes with one source and one sink.
Original entry on oeis.org
1, 2, 12, 216, 10600, 1306620, 384471444, 261548825328, 402632012394000, 1381332938730123060, 10440873023366019273820, 172308823347127690038311496, 6163501139185639837183141411320, 474942255590583211554917995123517868, 78430816994991932467786587093292327531620
Offset: 1
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- Antoine Genitrini, Martin Pépin, and Alfredo Viola, Unlabelled ordered DAGs and labelled DAGs: constructive enumeration and uniform random sampling, hal-03029381 [math.CO], [cs.DM], [cs.DS], 2020.
- Ira Gessel, Counting Acyclic Digraphs by Sources and Sinks
- Marcel et al., Is there a formula for the number of st-dags (DAG with 1 source and 1 sink) with n vertices?, MathOverflow, 2021.
-
nn = 10; B[n_] := n! 2^Binomial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}];
egf[ggf_] := Normal[Series[ggf, {z, 0, nn}]] /. Table[z^i -> z^i*2^Binomial[i, 2], {i, 1, nn + 1}]; Map[ Coefficient[#, u v] &,Table[n!, {n, 0, nn}] CoefficientList[ Series[Exp[(u - 1) (v - 1) z] egf[e[(u - 1) z]*1/e[-z]*e[(v - 1) z]], {z, 0, nn}], z]] (* Geoffrey Critzer, Apr 15 2023 *)
-
\\ see Marcel et al. link. B(n) is A003025 as vector.
B(n)={my(a=vector(n)); a[1]=1; for(n=2, #a, a[n]=sum(k=1, n-1, (-1)^(k-1)*binomial(n,k)*(2^(n-k)-1)^k*a[n-k])); a}
seq(n)={my(a=vector(n), b=B(n)); a[1]=1; for(n=2, #a, a[n]=sum(k=1, n-1, (-1)^(k-1) * binomial(n,k) * k * (2^(n-k)-1)^k * b[n-k])); a} \\ Andrew Howroyd, Jan 01 2022
a(1)=1 inserted and terms a(13) and beyond from
Andrew Howroyd, Jan 01 2022
Showing 1-6 of 6 results.
Comments