cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A345258 Number of acyclic digraphs (or DAGs) on n unlabeled vertices with one source and one sink.

Original entry on oeis.org

1, 1, 2, 10, 98, 1960, 80176, 6686760, 1129588960, 384610774696, 263104175114712, 360908867732030980, 991603865814038728388, 5453395569997436383751204, 60010050181461052836515513108, 1321051495313052133670927704328040, 58170762510305449187073353930875222256
Offset: 1

Views

Author

Max Alekseyev, Jun 12 2021

Keywords

Crossrefs

Row sums of A350491.
The labeled version is A165950.

Programs

Extensions

a(9) from Brendan McKay.
Terms a(10) and beyond from Mikhail Tikhomirov, Jun 16 2021

A350790 Number of digraphs on n labeled nodes with a global source and sink.

Original entry on oeis.org

1, 2, 12, 432, 64240, 33904800, 61721081184, 394586260943616, 9146766152111641344, 792073976107698469670400, 261895415169919230764987845120, 335402460348866803020064114666616832, 1678893205649791601327398844631544110815232
Offset: 1

Views

Author

Andrew Howroyd, Jan 16 2022

Keywords

Comments

This sequence differs from A049524 in that the source and sink are restricted to being single nodes.

Crossrefs

The unlabeled version is A350794.
Row sums of A350791.

Programs

  • Mathematica
    nn = 15; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
       Length@# == 2 &][[All, 2]]; s[z_] := Total[strong Table[z^i/i!, {i, 1, 58}]];
    ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 1, nn + 1}];egf[ggf_] := Normal[Series[ggf, {z, 0, nn}]] /.Table[z^i -> z^i*2^Binomial[i, 2], {i, 1, nn + 1}];Table[n!, {n, 0, nn}] CoefficientList[
    Series[z - z^2 + Exp[(u - 1) (v - 1) s[ z]] egf[ggf[z Exp[(u - 1) s[z]]]*1/ggf[Exp[-s[z]]]*ggf[z Exp[(v - 1) s[ z]]]] /. {u -> 0, v -> 0}, {z, 0, nn}], z] (* Geoffrey Critzer, Apr 17 2023 *)
  • PARI
    InitFinallyV(12) \\ See A350791 for program code.

Formula

For n >= 3, a(n) = 2*n*(n-1)*A003030(n-1) (Robinson equation 22). - Geoffrey Critzer, Apr 17 2023
Showing 1-2 of 2 results.