A003027
Number of weakly connected digraphs with n labeled nodes.
Original entry on oeis.org
1, 3, 54, 3834, 1027080, 1067308488, 4390480193904, 72022346388181584, 4721717643249254751360, 1237892809110149882059440768, 1298060596773261804821355107253504, 5444502293680983802677246555274553481984, 91343781554246596956424128384394531707099632640
Offset: 1
- R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Cf.
A053763 (not necessarily connected),
A003030 (strongly connected).
-
b:= n-> 2^(n^2-n):
a:= proc(n) option remember; local k; `if`(n=0, 1,
b(n)- add(k*binomial(n,k) *b(n-k)*a(k), k=1..n-1)/n)
end:
seq(a(n), n=1..20); # Alois P. Heinz, Oct 21 2012
-
Range[0, 20]! CoefficientList[Series[D[1 + Log[Sum[2^(n^2 - n) x^n/n!, {n, 0, 20}]], x], {x, 0,20}], x]
c[n_]:=2^(n(n-1))-Sum[k Binomial[n,k]c[k] 2^((n-k)(n-k-1)),{k,1,n-1}]/n;c[0]=1;Table[c[i],{i,0,20}] (* Geoffrey Critzer, Oct 24 2012 *)
-
v=Vec(log(sum(n=0, default(seriesprecision), 2^(n^2-n)*x^n/n!))); for(i=1, #v, v[i]*=(i-1)!); v \\ Charles R Greathouse IV, Feb 14 2011
-
b = lambda n: 2^(n^2-n)
@cached_function
def A003027(n):
return b(n) - sum(k*binomial(n, k)*b(n-k)*A003027(k) for k in (1..n-1)) / n
[A003027(n) for n in (1..13)] # Peter Luschny, Jan 18 2016
A274805
The logarithmic transform of sigma(n).
Original entry on oeis.org
1, 2, -3, -6, 45, 11, -1372, 4298, 59244, -573463, -2432023, 75984243, -136498141, -10881169822, 100704750342, 1514280063802, -36086469752977, -102642110690866, 11883894518252419, -77863424962770751, -3705485804176583500, 71306510264347489177
Offset: 1
Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = 1*x(1)
a(2) = 1*x(2) - x(1)^2
a(3) = 1*x(3) - 3*x(1)*x(2) + 2*x(1)^3
a(4) = 1*x(4) - 4*x(1)*x(3) - 3*x(2)^2 + 12*x(1)^2*x(2) - 6*x(1)^4
a(5) = 1*x(5) - 5*x(1)*x(4) - 10*x(2)*x(3) + 20*x(1)^2*x(3) + 30*x(1)*x(2)^2 - 60*x(1)^3*x(2) + 24*x(1)^5
- Frank Harary and Edgar M. Palmer, Graphical Enumeration, 1973.
- Robert James Riddell, Contributions to the theory of condensation, Dissertation, University of Michigan, Ann Arbor, 1951.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- Alois P. Heinz, Table of n, a(n) for n = 1..451
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Logarithmic Transform.
Cf.
A112005,
A007553,
A062740,
A007447,
A062738,
A033464,
A116652,
A002031,
A003704,
A003707,
A155585,
A000142,
A226968.
-
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: a:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*a(k), k=1..n-1)/n: end: seq(a(n), n=1..nmax); # End first LOG program.
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: t1 := log(1 + add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second LOG program.
nmax:=22: with(numtheory): b := proc(n): sigma(n) end: f := series(exp(add(r(n)*x^n/n!, n=1..nmax+1)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): r(1):= b(1): for n from 2 to nmax+1 do r(n) := solve(d(n)-b(n), r(n)): a(n):=r(n): od: seq(a(n), n=1..nmax); # End third LOG program.
-
a[1] = 1; a[n_] := a[n] = DivisorSigma[1, n] - Sum[k*Binomial[n, k] * DivisorSigma[1, n-k]*a[k], {k, 1, n-1}]/n; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 27 2017 *)
-
N=33; x='x+O('x^N); Vec(serlaplace(log(1+sum(n=1,N,sigma(n)*x^n/n!)))) \\ Joerg Arndt, Feb 27 2017
A197743
The number of connected components in all labeled directed graphs (with self loops allowed) on n nodes.
Original entry on oeis.org
0, 2, 20, 600, 70048, 34265920, 69135737856, 563921434969088, 18455775305195147264, 2418183926567027902291968, 1267698967252460350153517105152, 2658483881480146168943131337243754496, 22300809002478630462447974400280680553512960
Offset: 0
-
a=Sum[2^(n^2)x^n/n!, {n,0,20}]; Range[0,20]! CoefficientList[Series[a Log[a], {x,0,20}], x]
-
seq(n)={my(g=log(sum(k=0, n, 2^(k^2)*x^k/k!) + O(x*x^n))); Vec(serlaplace(g*exp(g)), -(n+1))} \\ Andrew Howroyd, Nov 07 2019
A127911
Number of nonisomorphic partial functional graphs with n points which are not functional graphs.
Original entry on oeis.org
0, 1, 3, 9, 26, 74, 208, 586, 1647, 4646, 13135, 37247, 105896, 301880, 862498, 2469480, 7083690, 20353886, 58571805, 168780848, 486958481, 1406524978, 4066735979, 11769294050, 34090034328, 98820719105, 286672555274
Offset: 0
a(0) = 0 because the null graph is trivially both partial functional and functional.
a(1) = 1 because there are two partial functional graphs on one point: the point with, or without, a loop; the point with loop is the identity function, but without a loop the naked point is the unique merely partial functional case.
a(2) = 3 because there are A126285(2) enumerates the 6 partial functional graphs on 2 points, of which 3 are functional, 6 - 3 = 3.
a(3) = A126285(3) - A001372(3) = 16 - 7 = 9.
a(4) = 45 - 19 = 26.
a(5) = 121 - 47 = 74.
a(6) = 338 - 130 = 208.
a(7) = 929 - 343 = 586.
a(8) = 2598 - 951 = 1647.
a(9) = 7261 - 2615 = 4646.
a(10) = 20453 - 7318 = 13135.
- S. Skiena, "Functional Graphs." Section 4.5.2 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 164-165, 1990.
A127912
Number of nonisomorphic disconnected mappings (or mapping patterns) from n points to themselves; number of disconnected endofunctions.
Original entry on oeis.org
0, 1, 3, 10, 27, 79, 218, 622, 1753, 5007, 14274, 40954, 117548, 338485, 975721, 2817871, 8146510, 23581381, 68322672, 198138512, 575058726, 1670250623, 4854444560, 14117859226, 41081418963, 119606139728
Offset: 0
a(0) = 0, as the null digraph is formally neither connected nor disconnected.
a(1) = 0, as the unique endofunction on one point is the identity function on one value and is connected.
a(2) = 1, as there are 3 endofunctions on two points, two of which are "prime endofunctions" and one of which is the direct sum of two copies of the unique endofunction on one point, namely two points-with-loops, or the identity function on two values; 3 - 2 = 1.
a(3) = A001372(3) - A002861(3) = 7 - 4 = 3.
a(4) = A001372(4) - A002861(4) = 19 - 9 = 10.
a(5) = A001372(5) - A002861(5) = 47 - 20 = 27.
a(6) = 130 - 51 = 79.
a(7) = 343 - 125 = 218.
a(8) = 951 - 329 = 622.
a(9) = 2615 - 862 = 1753.
a(10) = 7318 - 2311 = 5007.
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.6.
- R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.399 and 41.401.
A191249
Triangular array T(n,k) read by rows: number of labeled relations of the n-set with exactly k connected components.
Original entry on oeis.org
2, 12, 4, 432, 72, 8, 61344, 3888, 288, 16, 32866560, 665280, 21600, 960, 32, 68307743232, 407306880, 4328640, 95040, 2880, 64, 561981464819712, 965518299648, 2948037120, 21893760, 362880, 8064, 128
Offset: 1
2
12 4
432 72 8
61344 3888 288 16
32866560 665280 21600 960 32
-
a=Sum[2^(n^2) x^n/n!,{n,0,10}];
Transpose[Table[Drop[Range[0, 10]! CoefficientList[Series[Log[a]^n/n!, {x, 0, 10}],x],1], {n, 1, 10}]] // Grid
A217563
Irregular triangular array read by rows. T(n,k) is the number of weakly connected relations on n labeled nodes with k arcs. (n>=0, 0<=k<=n^2).
Original entry on oeis.org
1, 1, 1, 0, 2, 5, 4, 1, 0, 0, 12, 56, 111, 123, 84, 36, 9, 1, 0, 0, 0, 128, 944, 3264, 7096, 10936, 12687, 11400, 8004, 4368, 1820, 560, 120, 16, 1, 0, 0, 0, 0, 2000, 21104, 109400, 373920, 950725, 1915405, 3168880, 4394760, 5169230, 5188390, 4454000
Offset: 0
1,
1, 1,
0, 2, 5, 4, 1,
0, 0, 12, 56, 111, 123, 84, 36, 9, 1,
0, 0, 0, 128, 944, 3264, 7096, 10936, 12687, 11400, 8004, 4368, 1820, 560, 120, 16, 1
-
nn=6; s=Sum[(1+y)^(n^2) x^n/n!, {n,0,nn}]; Range[0,nn]! CoefficientList[Series[ Log[s]+1, {x,0,nn}], {x,y}] //Grid
A226358
Number of labeled relations on {1,2,...,n} such that 1 and 2 are in the same component.
Original entry on oeis.org
0, 0, 12, 456, 63264, 33261504, 68578235904, 562670659193856, 18444482155274686464, 2417777758564741377613824, 1267640925339738611935051382784, 2658450920454274160572632643718086656, 22300734564407398196216147429929635837640704
Offset: 0
a(3) = 456 because there are 432 connected relations on [3]. Then there are 12 connected relations on [2] and for each the element 3 may be related to itself or not.
432 + 2*12 = 456.
-
nn=10; g=Sum[2^n^2 x^n/n!, {n, 0, nn+2}]; Join[{0,0}, Range[0,nn]! * CoefficientList[Series[D[D[Log[g],x],x]g ,{x, 0, nn}], x]]
Showing 1-8 of 8 results.
Comments