cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A127910 a(n) = A003085(n+1) - A116950(n).

Original entry on oeis.org

0, 0, 6, 179, 9303, 1530669, 880470628, 1792473953828, 13026161682461949, 341247400399400753241, 32522568098548115377559180, 11366712907233351006127136781993, 14669074325902449468573755897547621015
Offset: 0

Views

Author

Jonathan Vos Post, Feb 06 2007

Keywords

Crossrefs

Extensions

Edited, new name from (corrected) formula, all nonzero terms corrected and more terms added, Joerg Arndt, May 23 2021

A035512 Number of unlabeled strongly connected digraphs with n nodes.

Original entry on oeis.org

1, 1, 1, 5, 83, 5048, 1047008, 705422362, 1580348371788, 12139024825260556, 328160951349343885604, 31831080872412589394328804, 11234274997368899732057135454531, 14576252633139820879894296847900227082
Offset: 0

Views

Author

Ronald C. Read

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218.
  • V. A. Liskovets, A contribution to the enumeration of strongly connected digraphs, Dokl. AN BSSR, 17 (1973), 1077-1080, MR49#4849.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

The labeled version is A003030.
Row sums of A057276.
Column sums of A350753.

Programs

Extensions

a(12) and a(13) added by N. J. A. Sloane from the Robinson report, Oct 17 2006

A003027 Number of weakly connected digraphs with n labeled nodes.

Original entry on oeis.org

1, 3, 54, 3834, 1027080, 1067308488, 4390480193904, 72022346388181584, 4721717643249254751360, 1237892809110149882059440768, 1298060596773261804821355107253504, 5444502293680983802677246555274553481984, 91343781554246596956424128384394531707099632640
Offset: 1

Views

Author

Keywords

References

  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The unlabeled case is A003085.
Row sums of A062735.
Cf. A053763 (not necessarily connected), A003030 (strongly connected).

Programs

  • Maple
    b:= n-> 2^(n^2-n):
    a:= proc(n) option remember; local k; `if`(n=0, 1,
          b(n)- add(k*binomial(n,k) *b(n-k)*a(k), k=1..n-1)/n)
        end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Oct 21 2012
  • Mathematica
    Range[0, 20]! CoefficientList[Series[D[1 + Log[Sum[2^(n^2 - n) x^n/n!, {n, 0, 20}]], x], {x, 0,20}], x]
    c[n_]:=2^(n(n-1))-Sum[k Binomial[n,k]c[k] 2^((n-k)(n-k-1)),{k,1,n-1}]/n;c[0]=1;Table[c[i],{i,0,20}]  (* Geoffrey Critzer, Oct 24 2012 *)
  • PARI
    v=Vec(log(sum(n=0, default(seriesprecision), 2^(n^2-n)*x^n/n!))); for(i=1, #v, v[i]*=(i-1)!); v \\ Charles R Greathouse IV, Feb 14 2011
    
  • Sage
    b = lambda n: 2^(n^2-n)
    @cached_function
    def A003027(n):
        return b(n) - sum(k*binomial(n, k)*b(n-k)*A003027(k) for k in (1..n-1)) / n
    [A003027(n) for n in (1..13)] # Peter Luschny, Jan 18 2016

Formula

a(n) = A062738(n)/2^n, since binary relations = digraphs with loops. - Ralf Stephan and Vladeta Jovovic, Mar 24 2004
E.g.f.: log(sum n>=0, 2^(n^2-n)*x^n/n!).
a(n) = A053763(n) - (1/n) * Sum_{k=1..n-1} k*C(n,k)*a(k)*A053763(n-k). - Geoffrey Critzer, Oct 24 2012

Extensions

Corrected and extended by Vladeta Jovovic, Goran Kilibarda

A051421 Number of digraphs on n unlabeled nodes with a sink (or, with a source).

Original entry on oeis.org

1, 2, 12, 185, 8990, 1505939, 875542491, 1789247738400, 13018820342147705, 341188114831706152794, 32520852428719860881939391, 11366533535523591133597276823755, 14669006027884671703581740693080811331, 70315546525961698601351615055416574931833334
Offset: 1

Views

Author

Keywords

Comments

Here a sink is defined to be a node to which all other nodes have a directed path. - Andrew Howroyd, Dec 27 2021

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218 (incorrect version).
  • Ronald C. Read, email to N. J. A. Sloane, 28 August, 2000.

Crossrefs

The labeled case is A003028.
Row sums of A057277.

Programs

Extensions

a(6) corrected and a(7) from Sean A. Irvine, Sep 11 2021
a(0)=1 removed and terms a(8) and beyond from Andrew Howroyd, Jan 21 2022

A049531 Number of digraphs with a source and a sink on n unlabeled nodes.

Original entry on oeis.org

1, 2, 11, 173, 8675, 1483821, 870901739, 1786098545810, 13011539185371716, 341128981258340797839, 32519138088689298538132027, 11366354205366488038532562993809, 14668937734550708660348161757913398001, 70315451107713339843384354196009678853303102
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Comments

Here a source is defined to be a node which has a directed path to all other nodes and a sink to be a node to which all other nodes have a directed path. A digraph with a source and a sink can also be described as initially-finally connected. - Andrew Howroyd, Jan 01 2022

References

  • V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 246.

Crossrefs

Row sums of A057278.
The labeled version is A049524.

Programs

Extensions

a(6)-a(7) from Andrew Howroyd, Jan 01 2022
Terms a(8) and beyond from Andrew Howroyd, Jan 20 2022

A052283 Triangle read by rows: T(n,k) is the number of unlabeled directed graphs on n nodes with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 5, 13, 27, 38, 48, 38, 27, 13, 5, 1, 1, 1, 1, 5, 16, 61, 154, 379, 707, 1155, 1490, 1670, 1490, 1155, 707, 379, 154, 61, 16, 5, 1, 1, 1, 1, 5, 17, 76, 288, 1043, 3242, 8951, 21209, 43863, 78814, 124115, 171024, 207362, 220922, 207362, 171024, 124115, 78814, 43863, 21209, 8951, 3242, 1043, 288, 76, 17, 5, 1, 1
Offset: 0

Views

Author

Vladeta Jovovic, Feb 07 2000

Keywords

Comments

Triangular array read by rows T(n,k) is the number of unlabeled directed graphs (no self loops allowed) on n nodes with exactly k edges where n >= 1, 0 <= k <= n(n-1). - Geoffrey Critzer, Nov 01 2011

Examples

			[1],
[1],
[1,1,1],
[1,1,4,4,4,1,1],
[1,1,5,13,27,38,48,38,27,13,5,1,1];
(the last batch giving the numbers of directed graphs with 4 nodes and from 0 to 12 arcs).
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 247.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 522.

Crossrefs

Cf. A000273 (row sums), A070166, A008406, A003085, A283753 (weakly connected).

Programs

  • Mathematica
    Table[CoefficientList[GraphPolynomial[n, x, Directed], x], {n, 1, 10}] (* Geoffrey Critzer, Nov 01 2011 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]*v[[j]]/g]^(2 g), {i, 2, Length[v]}, {j, 1, i-1}] * Product[ t[v[[i]]]^(v[[i]] - 1), {i, 1, Length[v]}];
    gp[n_] := (s = 0; Do[s += permcount[p]*edges[p, 1 + x^# &], {p, IntegerPartitions[n]}]; s/n!);
    A052283 = Reap[For[n = 1, n <= 6, n++, p = gp[n]; For[k = 0, k <= Exponent[p, x], k++, Sow[Coefficient[p, x, k]]]]][[2, 1]] (* Jean-François Alcover, Jul 09 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^(v[i]-1))}
    gp(n) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p,i->1+x^i)); s/n!}
    for(n=1, 6, my(p=gp(n)); for(k=0, poldegree(p), print1(polcoeff(p,k), ", ")); print); \\ Andrew Howroyd, Nov 05 2017

Formula

T(n,0) = T(n,1) = T(n,n(n-1)-1) = T(n,n) = 1. - Geoffrey Critzer, Nov 01 2011
T(2k,k) = T(2k+1,k) = T(2k+2,k) =... and is the maximum value of column k. - Geoffrey Critzer, Nov 01 2011

Extensions

a(0)=1 prepended and terms a(62) and beyond from Andrew Howroyd, Apr 20 2020

A054733 Triangle of number of (weakly) connected unlabeled digraphs with n nodes and k arcs (n >=2, k >= 1).

Original entry on oeis.org

1, 1, 0, 3, 4, 4, 1, 1, 0, 0, 8, 22, 37, 47, 38, 27, 13, 5, 1, 1, 0, 0, 0, 27, 108, 326, 667, 1127, 1477, 1665, 1489, 1154, 707, 379, 154, 61, 16, 5, 1, 1, 0, 0, 0, 0, 91, 582, 2432, 7694, 19646, 42148, 77305, 122953, 170315, 206982, 220768, 207301, 171008
Offset: 2

Views

Author

Vladeta Jovovic, Apr 21 2000

Keywords

Examples

			1,1;
0,3,4,4,1,1;
0,0,8,22,37,47,38,27,13,5,1,1;
the last batch giving the numbers of connected digraphs with 4 nodes and from 1 to 12 arcs.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.

Crossrefs

Cf. A000238 (leading diagonal), A003085 (row sums), A053454 (column sums), A062735 (labeled).
Cf. A052283 (not necessarily connected), A283753 (another version), A057276 (strongly connected), A350789 (transpose).

Programs

  • PARI
    InvEulerMTS(p)={my(n=serprec(p,x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g) )) * prod(i=1, #v, my(c=v[i]); t(c)^(c-1))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); s/n!}
    row(n)={Vecrev(polcoef(InvEulerMTS(sum(i=0, n, G(i, y)*x^i, O(x*x^n))), n)/y)}
    { for(n=2, 6, print(row(n))) } \\ Andrew Howroyd, Jan 28 2022

A003088 Number of unilateral digraphs with n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 11, 171, 8603, 1478644, 870014637
Offset: 0

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218.
  • Ronald C. Read, email to N. J. A. Sloane, 28 August, 2000.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Note that Read and Wilson incorrectly give a(4) as 172 - thanks to Vladeta Jovovic, Goran Kilibarda for finding this error and for verifying a(5).
a(7) from Sean A. Irvine, Jan 26 2015

A053454 Number of weakly connected digraphs with n arcs.

Original entry on oeis.org

1, 1, 4, 12, 53, 237, 1306, 7537, 47913, 322253, 2297874, 17191216, 134505656, 1095715055, 9267223594, 81162609328, 734511656413, 6856030049629, 65899370570285, 651338242941020, 6611459646337423, 68842439737228261
Offset: 0

Views

Author

Vladeta Jovovic, Jan 12 2000

Keywords

Crossrefs

Column sums of A054733.
Row sums of A350789.

Programs

  • PARI
    \\ See A054733 for G, InvEulerMTS.
    seq(n)=Vec(subst(Pol(InvEulerMTS(sum(i=0, n, G(i, y+O(y^n))*x^i, O(x*x^n)))), x, 1)) \\ Andrew Howroyd, Jan 28 2022

Formula

Inverse Euler transform of A053418. - Max Alekseyev, Jan 22 2010

Extensions

Extended by Max Alekseyev, Jan 22 2010
a(0)=1 prepended by Andrew Howroyd, Jan 28 2022

A350789 Triangle read by rows: T(n,k) is the number of unlabeled weakly connected digraphs with n arcs and k vertices, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 0, 4, 8, 0, 0, 4, 22, 27, 0, 0, 1, 37, 108, 91, 0, 0, 1, 47, 326, 582, 350, 0, 0, 0, 38, 667, 2432, 3024, 1376, 0, 0, 0, 27, 1127, 7694, 17314, 16008, 5743, 0, 0, 0, 13, 1477, 19646, 74676, 117312, 84494, 24635
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2022

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 3;
  0, 0, 4,  8;
  0, 0, 4, 22,   27;
  0, 0, 1, 37,  108,   91;
  0, 0, 1, 47,  326,  582,   350;
  0, 0, 0, 38,  667, 2432,  3024,  1376;
  0, 0, 0, 27, 1127, 7694, 17314, 16008, 5743;
  ...
		

Crossrefs

Row sums are A053454.
Column sums are A003085.
Main diagonal is A000238.
Cf. A054733 (transpose), A350450 (acyclic), A350753 (strongly connected).

Programs

  • PARI
    \\ See A054733 for G, InvEulerMTS
    T(n)={my(p=InvEulerMTS(sum(i=0, n, G(i, y+O(y^n))*x^i, O(x*x^n)))); vector(n, n, Vec(O(x^n)+polcoef(p,n-1,y)/x, -n))}
    { my(A=T(10)); for(n=1, #A, print(A[n])) }
Showing 1-10 of 24 results. Next