cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A003085 Number of weakly connected digraphs with n unlabeled nodes.

Original entry on oeis.org

1, 2, 13, 199, 9364, 1530843, 880471142, 1792473955306, 13026161682466252, 341247400399400765678, 32522568098548115377595264, 11366712907233351006127136886487, 14669074325902449468573755897547924182
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 124 and 241.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A054733.
Column sums of A350789.
The labeled case is A003027.
Cf. A000273, A003084, A035512 (strongly connected).

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(A000273):
    seq(a(n), n = 1..13); # Peter Luschny, Nov 21 2022
  • Mathematica
    Needs["Combinatorica`"]; d[n_] := GraphPolynomial[n, x, Directed] /. x -> 1; max = 13; se = Series[ Sum[a[n]*x^n/n, {n, 1, max}] - Log[1 + Sum[ d[n]*x^n, {n, 1, max}]], {x, 0, max}]; sol = SolveAlways[ se == 0, x]; Do[ A003084[n] = a[n] /. sol[[1]], {n, 1, max}]; ClearAll[a, d]; a[n_] := (1/n)*Sum[ MoebiusMu[ n/d ] * A003084[d], {d, Divisors[n]} ]; Table[ a[n], {n, 1, max}] (* Jean-François Alcover, Feb 01 2012, after formula *)
    terms = 13;
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v - 1];
    d[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]} ]; s/n!);
    A003084 = CoefficientList[Log[Sum[d[n] x^n, {n, 0, terms+1}]] + O[x]^(terms + 1), x] Range[0, terms] // Rest;
    a[n_] := (1/n)*Sum[MoebiusMu[n/d] * A003084[[d]], {d, Divisors[n]}];
    Table[a[n], {n, 1, terms}] (* Jean-François Alcover, Aug 30 2019, after Andrew Howroyd in A003084 *)
  • Python
    from functools import lru_cache
    from itertools import product, combinations
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A003085(n):
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 05 2024

Formula

a(n) = (1/n)*Sum_{d|n} mu(n/d)*A003084(d), where mu is Moebius function.
Inverse Euler transform of A000273. - Andrew Howroyd, Dec 27 2021

Extensions

More terms from Vladeta Jovovic, Jan 09 2000

A062735 Triangular array T(n,k) giving number of weakly connected digraphs with n labeled nodes and k arcs (n >= 1, 0 <= k <= n(n-1)).

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 12, 20, 15, 6, 1, 0, 0, 0, 128, 432, 768, 920, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 2000, 11104, 33880, 73480, 123485, 166860, 184426, 167900, 125965, 77520, 38760, 15504, 4845, 1140, 190, 20, 1, 0, 0, 0, 0, 0, 41472, 337920, 1536000, 5062080
Offset: 1

Views

Author

Vladeta Jovovic, Jul 12 2001

Keywords

Examples

			1;
0, 2, 1;
0, 0, 12, 20,   15,    6,      1;
0, 0, 0, 128,  432,  768,    920,    792,    495,    220,     66,    12, 1;
0, 0, 0,   0, 2000, 11104, 33880,  73480, 123485, 166860, 184426, 167900, ...;
0, 0, 0,   0,    0, 41472, 337920,1536000,5062080,.. ;
0, 0, 0,   0,    0,     0, 1075648,...
		

Crossrefs

Cf. A003027 (row sums), A054733 (unlabeled case), A057273 (strongly connected), A097629 (diagonal), A123554 (not necessarily connected).

Programs

  • Mathematica
    nn=7;s=Sum[(1+y)^(n^2-n) x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[Log[ s]+1,{x,0,nn}],{x,y}]//Grid  (* returns triangle indexed from n = 0, Geoffrey Critzer, Oct 07 2012 *)
  • PARI
    row(n)={Vecrev(n!*polcoef(1 + log(sum(k=0, n, (1+y)^(k*(k-1))*x^k/k!, O(x*x^n))), n))}
    { for(n=0, 5, print(row(n))) } \\ Andrew Howroyd, Jan 11 2022

Formula

E.g.f.: 1+log( Sum_{n >= 0, k >= 0} binomial(n*(n-1), k)*x^n/n!*y^k ).

A057276 Triangle T(n,k) of number of strongly connected digraphs on n unlabeled nodes and with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 4, 16, 22, 22, 11, 5, 1, 1, 0, 0, 0, 0, 0, 1, 7, 58, 240, 565, 928, 1065, 953, 640, 359, 150, 59, 16, 5, 1, 1, 0, 0, 0, 0, 0, 0, 1, 10, 165, 1281, 6063, 19591, 47049, 87690, 131927, 163632, 170720, 151238, 115122, 75357, 42745, 20891, 8877, 3224, 1039, 286, 76, 17, 5, 1, 1
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0,0,1;
  [3] 0,0,0,1,2,1,1;
  [4] 0,0,0,0,1,4,16,22,22,11,5,1,1;
  ...
The number of strongly connected digraphs on 3 unlabeled nodes is 5 = 1+2+1+1.
		

Crossrefs

Row sums give A035512.
Column sums give A350752.
The labeled version is A057273.

Programs

Extensions

Terms a(46) and beyond from Andrew Howroyd, Jan 13 2022

A350734 Triangle read by rows: T(n,k) is the number of weakly connected oriented graphs on n unlabeled nodes with k arcs, n >= 1, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 2, 0, 0, 0, 8, 12, 10, 4, 0, 0, 0, 0, 27, 68, 127, 144, 107, 50, 12, 0, 0, 0, 0, 0, 91, 395, 1144, 2393, 3767, 4500, 4112, 2740, 1274, 376, 56, 0, 0, 0, 0, 0, 0, 350, 2170, 9139, 28606, 71583, 145600, 244589, 339090, 387458, 361394, 271177, 159872, 71320, 22690, 4604, 456
Offset: 1

Views

Author

Andrew Howroyd, Jan 13 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 1;
  [3] 0, 0, 3, 2;
  [4] 0, 0, 0, 8, 12, 10,   4;
  [5] 0, 0, 0, 0, 27, 68, 127, 144, 107, 50, 12;
  ...
		

Crossrefs

Row sums are A086345.
Column sums are A350915.
Leading diagonal is A000238.
The labeled version is A350732.
Cf. A054733, A350733, A350750, A350914 (transpose).

Programs

  • PARI
    InvEulerMTS(p)={my(n=serprec(p,x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+2*x^i)); s/n!}
    row(n)={Vecrev(polcoef(InvEulerMTS(sum(i=0, n, G(i, y)*x^i, O(x*x^n))), n))}
    { for(n=1, 6, print(row(n))) }

A053454 Number of weakly connected digraphs with n arcs.

Original entry on oeis.org

1, 1, 4, 12, 53, 237, 1306, 7537, 47913, 322253, 2297874, 17191216, 134505656, 1095715055, 9267223594, 81162609328, 734511656413, 6856030049629, 65899370570285, 651338242941020, 6611459646337423, 68842439737228261
Offset: 0

Views

Author

Vladeta Jovovic, Jan 12 2000

Keywords

Crossrefs

Column sums of A054733.
Row sums of A350789.

Programs

  • PARI
    \\ See A054733 for G, InvEulerMTS.
    seq(n)=Vec(subst(Pol(InvEulerMTS(sum(i=0, n, G(i, y+O(y^n))*x^i, O(x*x^n)))), x, 1)) \\ Andrew Howroyd, Jan 28 2022

Formula

Inverse Euler transform of A053418. - Max Alekseyev, Jan 22 2010

Extensions

Extended by Max Alekseyev, Jan 22 2010
a(0)=1 prepended by Andrew Howroyd, Jan 28 2022

A350789 Triangle read by rows: T(n,k) is the number of unlabeled weakly connected digraphs with n arcs and k vertices, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 0, 4, 8, 0, 0, 4, 22, 27, 0, 0, 1, 37, 108, 91, 0, 0, 1, 47, 326, 582, 350, 0, 0, 0, 38, 667, 2432, 3024, 1376, 0, 0, 0, 27, 1127, 7694, 17314, 16008, 5743, 0, 0, 0, 13, 1477, 19646, 74676, 117312, 84494, 24635
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2022

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 3;
  0, 0, 4,  8;
  0, 0, 4, 22,   27;
  0, 0, 1, 37,  108,   91;
  0, 0, 1, 47,  326,  582,   350;
  0, 0, 0, 38,  667, 2432,  3024,  1376;
  0, 0, 0, 27, 1127, 7694, 17314, 16008, 5743;
  ...
		

Crossrefs

Row sums are A053454.
Column sums are A003085.
Main diagonal is A000238.
Cf. A054733 (transpose), A350450 (acyclic), A350753 (strongly connected).

Programs

  • PARI
    \\ See A054733 for G, InvEulerMTS
    T(n)={my(p=InvEulerMTS(sum(i=0, n, G(i, y+O(y^n))*x^i, O(x*x^n)))); vector(n, n, Vec(O(x^n)+polcoef(p,n-1,y)/x, -n))}
    { my(A=T(10)); for(n=1, #A, print(A[n])) }

A350908 Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled unisolated nodes with k arcs, k = 0..n*(n-1).

Original entry on oeis.org

0, 0, 1, 1, 0, 0, 3, 4, 4, 1, 1, 0, 0, 1, 9, 23, 37, 47, 38, 27, 13, 5, 1, 1, 0, 0, 0, 3, 34, 116, 331, 669, 1128, 1477, 1665, 1489, 1154, 707, 379, 154, 61, 16, 5, 1, 1, 0, 0, 0, 1, 15, 134, 664, 2535, 7796, 19719, 42193, 77324, 122960, 170317, 206983, 220768
Offset: 1

Views

Author

Andrew Howroyd, Jan 28 2022

Keywords

Examples

			Triangle begins:
  [1] 0;
  [2] 0, 1, 1;
  [3] 0, 0, 3, 4,  4,  1,  1;
  [4] 0, 0, 1, 9, 23, 37, 47, 38, 27, 13, 5, 1, 1;
  ...
		

Crossrefs

Row sums are A053598.
Column sums are A053418.
The labeled version is A054547.

Programs

  • PARI
    \\ See A054733 for G.
    row(n)={Vecrev(G(n,y)-G(n-1,y), n*(n-1)+1)}
    { for(n=1, 6, print(row(n))) }

A283753 Irregular triangular array read by rows: T(n,k) is the number of non-isomorphic unlabeled weakly connected digraphs on n nodes and with k arcs.

Original entry on oeis.org

1, 1, 1, 3, 4, 4, 1, 1, 8, 22, 37, 47, 38, 27, 13, 5, 1, 1, 27, 108, 326, 667, 1127, 1477, 1665, 1489, 1154, 707, 379, 154, 61, 16, 5, 1, 1, 91, 582, 2432, 7694, 19646, 42148, 77305, 122953, 170315, 206982, 220768, 207301, 171008, 124110, 78813, 43862, 21209, 8951, 3242, 1043, 288, 76, 17, 5, 1, 1, 350, 3024, 17314, 74676, 266364, 808620, 2144407
Offset: 1

Views

Author

Marko Riedel, Mar 15 2017

Keywords

Comments

The range for the subindex k is from n-1 to n(n-1).
Obtained from A054733 by removing leading zeros.

Examples

			First rows are:
1;
1,    1;
3,    4,   4,   1,    1;
8,   22,  37,  47,   38,   27,   13,    5,    1,   1;
27, 108, 326, 667, 1127, 1477, 1665, 1489, 1154, 707, 379, ...
		

References

  • E. Palmer and F. Harary, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Programs

  • PARI
    \\ See A054733 for G, InvEulerMTS.
    row(n)={Vecrev(polcoef(InvEulerMTS(sum(i=0, n, G(i, y)*x^i, O(x*x^n))), n)/y^(n-1))}
    { for(n=1, 6, print(row(n))) } \\ Andrew Howroyd, Jan 28 2022
Showing 1-8 of 8 results.