cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A035512 Number of unlabeled strongly connected digraphs with n nodes.

Original entry on oeis.org

1, 1, 1, 5, 83, 5048, 1047008, 705422362, 1580348371788, 12139024825260556, 328160951349343885604, 31831080872412589394328804, 11234274997368899732057135454531, 14576252633139820879894296847900227082
Offset: 0

Views

Author

Ronald C. Read

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218.
  • V. A. Liskovets, A contribution to the enumeration of strongly connected digraphs, Dokl. AN BSSR, 17 (1973), 1077-1080, MR49#4849.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

The labeled version is A003030.
Row sums of A057276.
Column sums of A350753.

Programs

Extensions

a(12) and a(13) added by N. J. A. Sloane from the Robinson report, Oct 17 2006

A057273 Triangle T(n,k) of the number of strongly connected digraphs on n labeled nodes and with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 2, 9, 6, 1, 0, 0, 0, 0, 6, 84, 316, 492, 417, 212, 66, 12, 1, 0, 0, 0, 0, 0, 24, 720, 6440, 26875, 65280, 105566, 122580, 106825, 71700, 37540, 15344, 4835, 1140, 190, 20, 1, 0, 0, 0, 0, 0, 0, 120, 6480, 107850, 868830, 4188696, 13715940
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0,0,1;
  [3] 0,0,0,2,9,6,1;
  [4] 0,0,0,0,6,84,316,492,417,212,66,12,1;
  ...
Number of strongly connected digraphs on 3 labeled nodes is 18 = 2+9+6+1.
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041. See Table 2.

Crossrefs

Row sums give A003030.
The unlabeled version is A057276.

Programs

  • PARI
    B(nn, e=2)={my(v=vector(nn)); for(n=1, nn, v[n] = e^(n*(n-1)) - sum(k=1, n-1, binomial(n,k)*e^((n-1)*(n-k))*v[k])); v}
    Strong(n, e=2)={my(u=B(n, e), v=vector(n)); v[1]=1; for(n=2, #v, v[n] = u[n] + sum(j=1, n-1, binomial(n-1, j-1)*u[n-j]*v[j])); v}
    row(n)={ Vecrev(Strong(n, 1+'y)[n]) }
    { for(n=1, 5, print(row(n))) } \\ Andrew Howroyd, Jan 10 2022

Extensions

Terms a(46) and beyond from Andrew Howroyd, Jan 10 2022

A350752 Number of unlabeled strongly connected digraphs with n arcs.

Original entry on oeis.org

1, 0, 1, 1, 3, 6, 25, 91, 442, 2241, 12591, 75180, 478648, 3211245, 22635956, 166828221, 1281518573, 10229858290, 84652925554, 724601312400, 6403522811765, 58327076550161, 546764617643250, 5267719312771122, 52096218005705959, 528285485054771639
Offset: 0

Views

Author

Andrew Howroyd, Jan 13 2022

Keywords

Crossrefs

Row sums of A350753.
Column sums of A057276.

Programs

A054733 Triangle of number of (weakly) connected unlabeled digraphs with n nodes and k arcs (n >=2, k >= 1).

Original entry on oeis.org

1, 1, 0, 3, 4, 4, 1, 1, 0, 0, 8, 22, 37, 47, 38, 27, 13, 5, 1, 1, 0, 0, 0, 27, 108, 326, 667, 1127, 1477, 1665, 1489, 1154, 707, 379, 154, 61, 16, 5, 1, 1, 0, 0, 0, 0, 91, 582, 2432, 7694, 19646, 42148, 77305, 122953, 170315, 206982, 220768, 207301, 171008
Offset: 2

Views

Author

Vladeta Jovovic, Apr 21 2000

Keywords

Examples

			1,1;
0,3,4,4,1,1;
0,0,8,22,37,47,38,27,13,5,1,1;
the last batch giving the numbers of connected digraphs with 4 nodes and from 1 to 12 arcs.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.

Crossrefs

Cf. A000238 (leading diagonal), A003085 (row sums), A053454 (column sums), A062735 (labeled).
Cf. A052283 (not necessarily connected), A283753 (another version), A057276 (strongly connected), A350789 (transpose).

Programs

  • PARI
    InvEulerMTS(p)={my(n=serprec(p,x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g) )) * prod(i=1, #v, my(c=v[i]); t(c)^(c-1))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); s/n!}
    row(n)={Vecrev(polcoef(InvEulerMTS(sum(i=0, n, G(i, y)*x^i, O(x*x^n))), n)/y)}
    { for(n=2, 6, print(row(n))) } \\ Andrew Howroyd, Jan 28 2022

A057278 Triangle T(n,k) of number of digraphs with a source and a sink on n unlabeled nodes and k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 4, 4, 1, 1, 0, 0, 0, 1, 11, 31, 45, 38, 27, 13, 5, 1, 1, 0, 0, 0, 0, 1, 23, 152, 486, 992, 1419, 1641, 1485, 1152, 707, 379, 154, 61, 16, 5, 1, 1, 0, 0, 0, 0, 0, 1, 42, 517, 3194, 12174, 32860, 68423, 116168, 166164, 204867, 219906, 206993, 170922, 124088, 78809, 43860, 21209, 8951, 3242, 1043, 288, 76, 17, 5, 1, 1
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle begins:
  [1],
  [0,1,1],
  [0,0,1,4,4,1,1],
  [0,0,0,1,11,31,45,38,27,13,5,1,1],
  ...
The number of digraphs with a source and a sink on 3 unlabeled nodes is 11 = 1+4+4+1+1.
		

References

  • V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 246.

Crossrefs

Row sums give A049531.
Column sums give A350906.
The labeled version is A057271.

Programs

Extensions

Terms a(46) and beyond from Andrew Howroyd, Jan 21 2022

A057277 Triangle T(n,k) of number of digraphs with a source on n unlabeled nodes with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 2, 4, 4, 1, 1, 0, 0, 0, 4, 16, 34, 46, 38, 27, 13, 5, 1, 1, 0, 0, 0, 0, 9, 56, 229, 573, 1058, 1448, 1653, 1487, 1153, 707, 379, 154, 61, 16, 5, 1, 1, 0, 0, 0, 0, 0, 20, 198, 1218, 5089, 15596, 37302, 72776, 119531, 168233, 205923, 220337, 207147, 170965, 124099, 78811, 43861, 21209, 8951, 3242, 1043, 288, 76, 17, 5, 1, 1
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle begins:
  [1],
  [0, 1, 1],
  [0, 0, 2, 4, 4, 1, 1],
  [0, 0, 0, 4, 16, 34, 46, 38, 27, 13, 5, 1, 1],
  ....
The number of digraphs with a source on 3 unlabeled nodes is 12 = 2+4+4+1+1.
		

Crossrefs

Row sums give A051421.
Column sums give A350907.
The labeled version is A057274.

Programs

Extensions

Terms a(46) and beyond from Andrew Howroyd, Jan 21 2022

A350750 Triangle read by rows: T(n,k) is the number of strongly connected oriented graphs on n unlabeled nodes with k arcs, n >= 1, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 5, 18, 27, 19, 6, 0, 0, 0, 0, 0, 0, 1, 8, 80, 333, 765, 1122, 1049, 622, 217, 35, 0, 0, 0, 0, 0, 0, 0, 1, 12, 221, 1875, 8971, 28449, 63845, 105556, 130935, 122607, 85926, 43868, 15506, 3403, 353
Offset: 1

Views

Author

Andrew Howroyd, Jan 13 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 0;
  [3] 0, 0, 0, 1;
  [4] 0, 0, 0, 0, 1, 2, 1;
  [5] 0, 0, 0, 0, 0, 1, 5, 18, 27,  19,   6;
  [6] 0, 0, 0, 0, 0, 0, 1,  8, 80, 333, 765, 1122, 1049, 622, 217, 35;
  ...
		

Crossrefs

Row sums are A350489.
Column sums are A350751.
The labeled version is A350731.
Cf. A057276 (digraphs), A350733, A350734.

Programs

  • PARI
    \\ See PARI link in A350489 for program code.
    { my(A=A350750rows(7)); for(n=1, #A, print(A[n])) }

A106238 Triangle read by rows: T(n,m) is the number of semi-strong digraphs on n unlabeled nodes with m connected components.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 83, 6, 1, 1, 5048, 88, 6, 1, 1, 1047008, 5146, 89, 6, 1, 1, 705422362, 1052471, 5151, 89, 6, 1, 1, 1580348371788, 706498096, 1052569, 5152, 89, 6, 1, 1, 12139024825260556, 1581059448174, 706503594, 1052574, 5152, 89, 6, 1, 1
Offset: 1

Views

Author

Washington Bomfim, May 01 2005

Keywords

Comments

The formula T(n,m) is the sum over the partitions of n with m parts 1K1 + 2K2 + ... + nKn, of Product_{i=1..n} binomial(f(i) + Ki - 1, Ki) can be used to count unlabeled graphs of order n with m components if f(i) is the number of non-isomorphic connected components of order i. (In general, f denotes a sequence that counts unlabeled connected combinatorial objects.)
A digraph is semi-strong if all its weakly connected components are strongly connected. - Andrew Howroyd, Jan 14 2022

Examples

			Triangle begins:
          1;
          1,       1;
          5,       1,    1;
         83,       6,    1,  1;
       5048,      88,    6,  1, 1;
    1047008,    5146,   89,  6, 1, 1;
  705422362, 1052471, 5151, 89, 6, 1, 1;
  ...
T(4,2) = 6 because there are 6 digraphs of order 4 with 2 strongly connected components.
		

Crossrefs

Row sums are A350754.
Column 1 is A035512.

Formula

G.f.: 1/Product_{i>=1} (1-y*x^i)^A035512(i). - Vladeta Jovovic, May 04 2005
Triangle read by rows: T(n, m) is the sum over the partitions of n with m parts 1K1 + 2K2 + ... + nKn, of Product_{i=1..n} binomial(A035512(i) + Ki - 1, Ki).

Extensions

Definition clarified by Andrew Howroyd, Jan 14 2022

A350753 Triangle read by rows: T(n,k) is the number of unlabeled strongly connected digraphs with n arcs and k vertices, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 4, 1, 0, 0, 0, 1, 16, 7, 1, 0, 0, 0, 0, 22, 58, 10, 1, 0, 0, 0, 0, 22, 240, 165, 14, 1, 0, 0, 0, 0, 11, 565, 1281, 365, 18, 1, 0, 0, 0, 0, 5, 928, 6063, 4838, 733, 23, 1, 0, 0, 0, 0, 1, 1065, 19591, 38516, 14661, 1317, 28, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Jan 14 2022

Keywords

Examples

			Triangle begins:
  1;
  0, 0;
  0, 1, 0;
  0, 0, 1,  0;
  0, 0, 2,  1,   0;
  0, 0, 1,  4,   1,    0;
  0, 0, 1, 16,   7,    1,   0;
  0, 0, 0, 22,  58,   10,   1,  0;
  0, 0, 0, 22, 240,  165,  14,  1, 0;
  0, 0, 0, 11, 565, 1281, 365, 18, 1, 0;
		

Crossrefs

Row sums are A350752.
Column sums are A035512.
Cf. A057276 (transpose), A350450, A350489.

Programs

  • PARI
    \\ See PARI link in A350489 for program code.
    my(A=A350753rows(10)); for(n=1, #A, print(A[n]))
Showing 1-9 of 9 results.