cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A106239 Triangle read by rows: T(n,m) = number of graphs on n labeled nodes, with m components of size = order. Also number of graphs on n labeled nodes with m unicyclic components.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 15, 0, 0, 0, 222, 0, 0, 0, 0, 3660, 10, 0, 0, 0, 0, 68295, 525, 0, 0, 0, 0, 0, 1436568, 20307, 0, 0, 0, 0, 0, 0, 33779340, 727020, 280, 0, 0, 0, 0, 0, 0, 880107840, 25934184, 31500, 0, 0, 0, 0, 0, 0, 0, 25201854045, 950478210, 2325015, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Washington Bomfim, May 03 2005

Keywords

Comments

Also the Bell transform of A057500(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			a(30) = T[8,2] = 20307. The partitions of 8 with two parts p, p>=3 are [5*1 + 3*1], and [4*2].
Partition [5*1 + 3*1] corresponds to f(5)^1 * f(3)^1 / ( (1! * 5!^1) * (1! * 3!^1) ) = 222 /(5! * 3!) = 37/120; Partition [4*2] corresponds to f(4)^2 / ( 2! * 4!^2) = 225 / (2*4!^2) = 25/128. Finally 8! * (37/120 + 25/128) = 20307. (See formula).
Triangle T(n,m) begins:
          0;
          0,        0;
          1,        0,     0;
         15,        0,     0, 0;
        222,        0,     0, 0, 0;
       3660,       10,     0, 0, 0, 0;
      68295,      525,     0, 0, 0, 0, 0;
    1436568,    20307,     0, 0, 0, 0, 0, 0;
   33779340,   727020,   280, 0, 0, 0, 0, 0, 0;
  880107840, 25934184, 31500, 0, 0, 0, 0, 0, 0, 0;
		

References

  • D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 3: Generating All Combinations and Partitions, Addison-Wesley, 2005, pp. 39, 47.

Crossrefs

Cf. A057500, A106238 (similar formulas that can be used in the unlabeled case).

Programs

  • Maple
    cy:= proc(n) option remember; local t; binomial(n-1, 2) *add ((n-3)! /(n-2-t)! *n^(n-2-t), t=1..n-2) end: T:= proc(n,m) if m=1 then cy(n) else add (binomial(n-1, j) *cy(j+1) * T(n-1-j, m-1), j=2..n-1) fi end: seq (seq (T(n,m), m=1..n), n=1..11); # Alois P. Heinz, Sep 15 2008
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    a := n -> n!*n^(n-1)/2*add(1/(n^k*(n-k)!), k=3..n);
    BellMatrix(n -> a(n+1), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    nn=12;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[Exp[y(Log[1/(1-t)]/2-t/2-t^2/4)],{x,0,nn}],{x,y}] //Grid  (* Geoffrey Critzer, Nov 04 2012 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[(#+1)! (#+1)^#/2 Sum[1/((#+1)^k (#-k+1)!), {k, 3, #+1}]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
  • PARI
    Row(n)={my(w=lambertw(-x+O(x*x^n))); Vecrev(n!*if(n>=3, polcoef(exp(-y*log(1+w)/2 + y*w/2 - y*w^2/4), n)/y), n)}
    {for(n=1, 10, print(Row(n)))} \\ Andrew Howroyd, Apr 06 2020
    
  • PARI
    x = 90; D = Set(x); A = t = vector(x);
    \p 500        \\ See Peter Luschny formula in A057500.
    f = vector(x, n, round( (n^(n-2)*(1-3*n) + exp(n) * incgam(n+1,n) /n)/2) );
    T(n,m)={my(p,c,S=0,Pr,cD,j);if(m>floor(n/3),return(0));if(n>x,return(-1));
    forpart(a = n, A = Vec(a); Pr = 1; D = Set(a); cD = #D;
    for(j=1,cD, p= D[j]; t= select(x-> x==p, A); c=#t; Pr *= f[p]^c / (c!*p!^c));
    S += Pr, [3,n],[m,m]); n! * S };\\ - Washington Bomfim, Apr 07 2020

Formula

E.g.f.: exp((-y/2)*log(1+LambertW(-x)) + (y/2)*LambertW(-x) - (y/4)*LambertW(-x)^2). - Vladeta Jovovic, May 04 2005
T(n,m) = n! * Sum_{P(n,m)} Product_{p=1..n} f(p)^c_p / (c_p! * p!^c_p), where f(n) = A057500(n) =(n^(n-2)*(1-3*n)+exp(n)*Gamma(n+1,n)/n)/2, and P(n,m) are the partitions of n with m parts p, all p>=3: c_1 + 2*c_2 + ... + n*c_n = n; c_1,c_2, ..., c_n>= 0. - Washington Bomfim, May 03 2005, updated Apr 08 2020
T(n,1) = A057500(n), T(n,m) = Sum_{j=2..n-1} C(n-1,j) * A057500(j+1) * T(n-1-j,m-1) if m>1. - Alois P. Heinz, Sep 15 2008

A361582 Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled nodes with k strongly connected components.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 5, 5, 6, 0, 83, 62, 42, 31, 0, 5048, 2494, 1172, 592, 302, 0, 1047008, 330063, 103961, 38312, 15616, 5984, 0, 705422362, 137934757, 28095923, 7243110, 2297690, 795930, 243668, 0, 1580348371788, 184557780045, 23226116293, 3951426731, 914429926, 261269562, 79512478, 20286025
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2023

Keywords

Examples

			Triangle begins:
  1;
  0,       1;
  0,       1,      2;
  0,       5,      5,      6;
  0,      83,     62,     42,    31;
  0,    5048,   2494,   1172,   592,   302;
  0, 1047008, 330063, 103961, 38312, 15616, 5984;
  ...
		

Crossrefs

Column k=1 is A035512.
Main diagonal is A003087.
Row sums are A000273.
The labeled version is A361455.

Programs

  • PARI
    \\ See PARI link in A350794 for program code.
    { my(A=A361582triang(6)); for(n=1, #A, print(A[n])) }

A350754 Number of semi-strong digraphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 7, 91, 5144, 1052251, 706480081, 1581055927702, 12140606592270147, 328173093539912361767, 31831409057653120420337536, 11234306829106179168513020426663, 14576263867478482708779036941179024765, 70075728362112833245095630646535639894359350
Offset: 0

Views

Author

Andrew Howroyd, Jan 14 2022

Keywords

Comments

A digraph is semi-strong if all its weakly connected components are strongly connected.

Crossrefs

The labeled version is A054948.
Row sums of A106238.
Cf. A035512.

Formula

Euler transform of A035512.
Showing 1-3 of 3 results.