cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A137916 Number of n-node labeled graphs whose components are unicyclic graphs.

Original entry on oeis.org

1, 0, 0, 1, 15, 222, 3670, 68820, 1456875, 34506640, 906073524, 26154657270, 823808845585, 28129686128940, 1035350305641990, 40871383866109888, 1722832666898627865, 77242791668604946560, 3670690919234354407000, 184312149879830557190940, 9751080154504005703189791
Offset: 0

Views

Author

Washington Bomfim, Feb 22 2008

Keywords

Comments

Also the number of labeled simple graphs with n vertices and n edges such that it is possible to choose a different vertex from each edge. The version without the choice condition is A116508, covering A367863. - Gus Wiseman, Jan 25 2024

Examples

			a(6) = 3670 because A057500(6) = 3660 and two triangles can be labeled in 10 ways.
From _Gus Wiseman_, Jan 25 2024: (Start)
The a(0) = 1 through a(4) = 15 simple graphs:
  {}  .  .  {12,13,23}  {12,13,14,23}
                        {12,13,14,24}
                        {12,13,14,34}
                        {12,13,23,24}
                        {12,13,23,34}
                        {12,13,24,34}
                        {12,14,23,24}
                        {12,14,23,34}
                        {12,14,24,34}
                        {12,23,24,34}
                        {13,14,23,24}
                        {13,14,23,34}
                        {13,14,24,34}
                        {13,23,24,34}
                        {14,23,24,34}
(End)
		

References

  • V. F. Kolchin, Random Graphs. Encyclopedia of Mathematics and Its Applications 53. Cambridge Univ. Press, Cambridge, 1999.

Crossrefs

The connected case is A057500.
Row sums of A106239.
The unlabeled version is A137917.
Diagonal of A144228.
The version with loops appears to be A333331, unlabeled A368984.
Column k = 0 of A368924.
The complement is counted by A369143, unlabeled A369201, covering A369144.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A133686 counts choosable simple graphs, covering A367869.
A140637 counts unlabeled non-choosable graphs, covering A369202.
A367867 counts non-choosable graphs, covering A367868.

Programs

  • Maple
    cy:= proc(n) option remember;
           binomial(n-1, 2)*add((n-3)!/(n-2-t)!*n^(n-2-t), t=1..n-2)
         end:
    T:= proc(n,k) option remember; `if`(k=0, 1, `if`(k<0 or n T(n,n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 15 2008
  • Mathematica
    nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Drop[Range[0, nn]! CoefficientList[Series[Exp[Log[1/(1 - t)]/2 - t/2 - t^2/4], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Jan 24 2012 *)
    Table[Length[Select[Subsets[Subsets[Range[n],{2}],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]],{n,0,5}] (* Gus Wiseman, Jan 25 2024 *)
  • PARI
    A057500(p) = (p-1)! * p^p /2 * sum(k = 3,p, 1/(p^k*(p-k)!)); /* Vladeta Jovovic, A057500. */
    F(n,N) = { my(s = 0, K, D, Mc); forpart(P = n, D = Set(P); K = vector(#D);
    for(i=1, #D, K[i] = #select(x->x == D[i], Vec(P)));
    Mc = n!/prod(i=1,#D, K[i]!);
    s += Mc * prod(i = 1, #D, A057500(D[i])^K[i] / ( D[i]!^K[i])) , [3, n], [N, N]); s };
    a(n)= {my(N); sum(N = 1, n, F(n,N))};
    
  • PARI
    seq(n)={my(w=lambertw(-x+O(x*x^n))); Vec(serlaplace(exp(-log(1+w)/2 + w/2 - w^2/4)))} \\ Andrew Howroyd, May 18 2021

Formula

a(n) = Sum_{N = 1..n} ((n!/N!) * Sum_{n_1 + n_2 + ... + n_N = n} Product_{i = 1..N} ( A057500(n_i) / n_i! ) ). [V. F. Kolchin p. 31, (1.4.2)] replacing numerator terms n_i^(n_i-2) by A057500(n_i).
a(n) = A144228(n,n). - Alois P. Heinz, Sep 15 2008
E.g.f.: exp(B(T(x))) where B(x) = (log(1/(1-x))-x-x^2/2)/2 and T(x) is the e.g.f. for A000169 (labeled rooted trees). - Geoffrey Critzer, Jan 24 2012
a(n) ~ 2^(-1/4)*exp(-3/4)*GAMMA(3/4)*n^(n-1/4)/sqrt(Pi) * (1-7*Pi/(12*GAMMA(3/4)^2*sqrt(n))). - Vaclav Kotesovec, Aug 16 2013
E.g.f.: exp(B(x)) where B(x) is the e.g.f. of A057500. - Andrew Howroyd, May 18 2021

Extensions

a(0)=1 prepended by Andrew Howroyd, May 18 2021

A106238 Triangle read by rows: T(n,m) is the number of semi-strong digraphs on n unlabeled nodes with m connected components.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 83, 6, 1, 1, 5048, 88, 6, 1, 1, 1047008, 5146, 89, 6, 1, 1, 705422362, 1052471, 5151, 89, 6, 1, 1, 1580348371788, 706498096, 1052569, 5152, 89, 6, 1, 1, 12139024825260556, 1581059448174, 706503594, 1052574, 5152, 89, 6, 1, 1
Offset: 1

Views

Author

Washington Bomfim, May 01 2005

Keywords

Comments

The formula T(n,m) is the sum over the partitions of n with m parts 1K1 + 2K2 + ... + nKn, of Product_{i=1..n} binomial(f(i) + Ki - 1, Ki) can be used to count unlabeled graphs of order n with m components if f(i) is the number of non-isomorphic connected components of order i. (In general, f denotes a sequence that counts unlabeled connected combinatorial objects.)
A digraph is semi-strong if all its weakly connected components are strongly connected. - Andrew Howroyd, Jan 14 2022

Examples

			Triangle begins:
          1;
          1,       1;
          5,       1,    1;
         83,       6,    1,  1;
       5048,      88,    6,  1, 1;
    1047008,    5146,   89,  6, 1, 1;
  705422362, 1052471, 5151, 89, 6, 1, 1;
  ...
T(4,2) = 6 because there are 6 digraphs of order 4 with 2 strongly connected components.
		

Crossrefs

Row sums are A350754.
Column 1 is A035512.

Formula

G.f.: 1/Product_{i>=1} (1-y*x^i)^A035512(i). - Vladeta Jovovic, May 04 2005
Triangle read by rows: T(n, m) is the sum over the partitions of n with m parts 1K1 + 2K2 + ... + nKn, of Product_{i=1..n} binomial(A035512(i) + Ki - 1, Ki).

Extensions

Definition clarified by Andrew Howroyd, Jan 14 2022

A218696 Number of components over all graphs on n labeled nodes with unicyclic components (graphs counted by A137916).

Original entry on oeis.org

1, 15, 222, 3680, 69345, 1477182, 35234220, 932070708, 27109785510, 860394764515, 29600058300780, 1097511032533500, 43637308561557074, 1852311640075120980, 83612841417061582320, 3999611090385007608840, 202111299843794061251580, 10758947714752854861908379
Offset: 3

Views

Author

Geoffrey Critzer, Nov 04 2012

Keywords

Crossrefs

Cf. A057500.

Programs

  • Mathematica
    nn=22;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Drop[Range[0,nn]!CoefficientList[ Series[D[Exp[y(Log[1/(1-t)]/2-t/2-t^2/4)],y]/.y->1,{x,0,nn}],x],3]

Formula

a(n) = Sum_{m=1..floor(n/3)} A106239(n,m)*m.
Showing 1-3 of 3 results.