cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A062735 Triangular array T(n,k) giving number of weakly connected digraphs with n labeled nodes and k arcs (n >= 1, 0 <= k <= n(n-1)).

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 12, 20, 15, 6, 1, 0, 0, 0, 128, 432, 768, 920, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 2000, 11104, 33880, 73480, 123485, 166860, 184426, 167900, 125965, 77520, 38760, 15504, 4845, 1140, 190, 20, 1, 0, 0, 0, 0, 0, 41472, 337920, 1536000, 5062080
Offset: 1

Views

Author

Vladeta Jovovic, Jul 12 2001

Keywords

Examples

			1;
0, 2, 1;
0, 0, 12, 20,   15,    6,      1;
0, 0, 0, 128,  432,  768,    920,    792,    495,    220,     66,    12, 1;
0, 0, 0,   0, 2000, 11104, 33880,  73480, 123485, 166860, 184426, 167900, ...;
0, 0, 0,   0,    0, 41472, 337920,1536000,5062080,.. ;
0, 0, 0,   0,    0,     0, 1075648,...
		

Crossrefs

Cf. A003027 (row sums), A054733 (unlabeled case), A057273 (strongly connected), A097629 (diagonal), A123554 (not necessarily connected).

Programs

  • Mathematica
    nn=7;s=Sum[(1+y)^(n^2-n) x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[Log[ s]+1,{x,0,nn}],{x,y}]//Grid  (* returns triangle indexed from n = 0, Geoffrey Critzer, Oct 07 2012 *)
  • PARI
    row(n)={Vecrev(n!*polcoef(1 + log(sum(k=0, n, (1+y)^(k*(k-1))*x^k/k!, O(x*x^n))), n))}
    { for(n=0, 5, print(row(n))) } \\ Andrew Howroyd, Jan 11 2022

Formula

E.g.f.: 1+log( Sum_{n >= 0, k >= 0} binomial(n*(n-1), k)*x^n/n!*y^k ).

A057276 Triangle T(n,k) of number of strongly connected digraphs on n unlabeled nodes and with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 4, 16, 22, 22, 11, 5, 1, 1, 0, 0, 0, 0, 0, 1, 7, 58, 240, 565, 928, 1065, 953, 640, 359, 150, 59, 16, 5, 1, 1, 0, 0, 0, 0, 0, 0, 1, 10, 165, 1281, 6063, 19591, 47049, 87690, 131927, 163632, 170720, 151238, 115122, 75357, 42745, 20891, 8877, 3224, 1039, 286, 76, 17, 5, 1, 1
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0,0,1;
  [3] 0,0,0,1,2,1,1;
  [4] 0,0,0,0,1,4,16,22,22,11,5,1,1;
  ...
The number of strongly connected digraphs on 3 unlabeled nodes is 5 = 1+2+1+1.
		

Crossrefs

Row sums give A035512.
Column sums give A350752.
The labeled version is A057273.

Programs

Extensions

Terms a(46) and beyond from Andrew Howroyd, Jan 13 2022

A057271 Triangle T(n,k) of number of digraphs with a source and a sink on n labeled nodes and k arcs, k=0,1,..,n*(n-1).

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 6, 20, 15, 6, 1, 0, 0, 0, 24, 234, 672, 908, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 120, 2544, 16880, 55000, 111225, 161660, 183006, 167660, 125945, 77520, 38760, 15504, 4845, 1140, 190, 20, 1
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle starts:
[1] 1;
[2] 0,2,1;
[3] 0,0,6,20,15,6,1;
[4] 0,0,0,24,234,672,908,792,495,220,66,12,1;
  ...
The number of digraphs with a source and a sink on 3 labeled nodes is 48 = 6+20+15+6+1.
		

References

  • V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 245.

Crossrefs

Row sums give A049524.
The unlabeled version is A057278.

Programs

  • PARI
    \\ Following Eqn 20 in the Robinson reference.
    Z(p,f)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
    G(e,p)={Z(p, k->1/e^(k*(k-1)/2))}
    U(e,p)={Z(p, k->e^(k*(k-1)/2))}
    DigraphEgf(n,e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
    StrongD(n,e=2)={-log(U(e, 1/G(e, DigraphEgf(n, e))))}
    InitFinally(n, e=2)={my(S=StrongD(n, e)); Vec(serlaplace( S - S^2 + exp(S) * U(e, G(e, S*exp(-S))^2*G(e, DigraphEgf(n,e))) ))}
    row(n)={Vecrev(InitFinally(n, 1+'y)[n]) }
    { for(n=1, 5, print(row(n))) } \\ Andrew Howroyd, Jan 16 2022

A057274 Triangle T(n,k) of the number of digraphs with a source on n labeled nodes with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 9, 20, 15, 6, 1, 0, 0, 0, 64, 330, 720, 914, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 625, 5804, 24560, 63940, 117310, 164260, 183716, 167780, 125955, 77520, 38760, 15504, 4845, 1140, 190, 20, 1
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle begins:
  1;
  0, 2, 1;
  0, 0, 9, 20,  15,   6,   1;
  0, 0, 0, 64, 330, 720, 914, 792, 495, 220, 66, 12, 1;
  ...
The number of digraphs with a source on 3 labeled nodes is the sum of the terms in row 3, i.e., 0+0+9+20+15+6+1 = 51 = A003028(3).
		

Crossrefs

Row sums give A003028.
The unlabeled version is A057277.

Programs

  • PARI
    \\ See A057273 for Strong.
    Lambda(t, nn, e=2)={my(v=vector(1+nn)); for(n=0, nn, v[1+n] = e^(n*(n+t-1)) - sum(k=0, n-1, binomial(n,k)*e^((n-1)*(n-k))*v[1+k])); v}
    Initially(n, e=2)={my(s=Strong(n, e), v=vector(n)); for(k=1, n, my(u=Lambda(k, n-k, e)); for(i=k, n, v[i] += binomial(i,k)*u[1+i-k]*s[k])); v }
    row(n)={ Vecrev(Initially(n, 1+'y)[n]) }
    { for(n=1, 5, print(row(n))) } \\ Andrew Howroyd, Jan 11 2022

A057272 Triangle T(n,k) of number of digraphs with a quasi-source on n labeled nodes and with k arcs, k=0,1,..,n*(n-1).

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 12, 20, 15, 6, 1, 0, 0, 0, 104, 426, 768, 920, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 1160, 9184, 32420, 73000, 123425, 166860, 184426, 167900, 125965, 77520, 38760, 15504, 4845, 1140, 190, 20, 1
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle starts:
1;
0,2,1;
0,0,12,20,15,6,1;
0,0,0,104,426,768,920,792,495,220,66,12,1;
...
Number of digraphs with a quasi-source on 3 labeled nodes is 54=12+20+15+6+1.
		

Crossrefs

Row sums give A049414. Cf. A057270, A057271, A057273-A057279.

A057275 Triangle T(n,k) of number of unilaterally connected digraphs on n labeled nodes and with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 6, 20, 15, 6, 1, 0, 0, 0, 24, 222, 660, 908, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 120, 2304, 15540, 52700, 109545, 161120, 182946, 167660, 125945, 77520, 38760, 15504, 4845, 1140, 190, 20, 1
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle begins:
  [1],
  [0,2,1],
  [0,0,6,20,15,6,1],
  [0,0,0,0,24,222,660,908,792,495,220,66,12,1],
  ...
The number of unilaterally connected digraphs on 3 labeled nodes is 48 = 6+20+15+6+1.
		

Crossrefs

Row sums give A003029.
The unlabeled version is A057270.

Programs

  • PARI
    \\ See A057273 for Strong.
    Unilaterally(n, e=2)={my(u=vector(n), s=Strong(n,e)); for(n=1, #u, u[n]=vector(n, k, binomial(n,k)*s[k]*if(k==n, 1, sum(j=1, n-k, e^(k*(n-k-j))*(e^(k*j)-1)*u[n-k][j])))); vector(#u, n, vecsum(u[n]))}
    row(n)={Vecrev(Unilaterally(n, 1+'y)[n])}
    { for(n=1, 5, print(row(n))) } \\ Andrew Howroyd, Jan 19 2022

A350731 Triangle read by rows: T(n,k) is the number of strongly connected oriented graphs on n labeled nodes with k arcs, n >= 1, k=0..n*(n-1)/2.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 6, 36, 24, 0, 0, 0, 0, 0, 24, 480, 1940, 2970, 2040, 544, 0, 0, 0, 0, 0, 0, 120, 5040, 51330, 221910, 527940, 772080, 722250, 426420, 146160, 22320, 0, 0, 0, 0, 0, 0, 0, 720, 52920, 1026060, 8810970, 43268442, 138984510
Offset: 1

Views

Author

Andrew Howroyd, Jan 11 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 0;
  [3] 0, 0, 0, 2;
  [4] 0, 0, 0, 0, 6, 36,  24;
  [5] 0, 0, 0, 0, 0, 24, 480, 1940, 2970, 2040, 544;
  ...
		

Crossrefs

Row sums are A350730.
The unlabeled version is A350750.
Cf. A057273 (digraphs), A350732 (weakly connected).

Programs

  • PARI
    OrientedGgf(n, y=1) = {sum(k=0, n, ((1+2*y)/(1+y))^(k*(k-1)/2)*x^k/k!, O(x*x^n) )}
    StrongO(n, y=1) = {my(g=serconvol(1/OrientedGgf(n,y), sum(k=0, n, x^k*(1+y)^(k*(k-1)/2), O(x*x^n)))); Vec(serlaplace(-log(g)))}
    row(n)={Vecrev(StrongO(n,'y)[n], n*(n-1)/2+1)}
    { for(n=1, 6, print(row(n))) }

A339807 Irregular triangle read by rows: T(n,k) (n>=2, k>=1) is the number of strong digraphs on n nodes with k descents.

Original entry on oeis.org

1, 2, 11, 5, 10, 154, 540, 581, 272, 49, 122, 3418, 27304, 90277, 150948, 150519, 95088, 37797, 8714, 893, 3346, 142760, 1938178, 12186976, 42696630, 94605036, 145009210, 161845163, 134933733, 84656743, 39632149, 13481441, 3156845, 455917, 30649
Offset: 2

Views

Author

Hugo Pfoertner, Dec 28 2020

Keywords

Comments

T(n,1) = A005321(n-1). Length of row n = binomial(n,2). It appears that T(n,binomial(n,2)) = A348901(n-1). - Geoffrey Critzer, Feb 12 2025

Examples

			Triangle begins:
 1;
 2, 11, 5;
 10, 154, 540, 581, 272, 49;
 122, 3418, 27304, 90277, 150948, 150519, 95088, 37797, 8714, 893;
 3346, 142760, 1938178, 12186976, 42696630, 94605036, 145009210, 161845163, 134933733, 84656743, 39632149, 13481441, 3156845, 455917, 30649;
 ...
		

Crossrefs

Cf. A003030 (row sums), A057273 (another version of the same triangle), A307049, A339590, A005321, A000217.

Programs

  • Mathematica
    nn = 8; B[n_] := FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]] (1 + y)^Binomial[n, 2]; g[z_] := Sum[(1 + u y)^Binomial[n, 2] z^n/FunctionExpand[QFactorial[n, (1 + u y)/(1 + y)]], {n, 0, nn}]; egf[eggf_] := Normal[Series[eggf, {z, 0, nn}]] /.Table[z^i -> z^i*B[i]/i!, {i, 1, nn + 1}]; Map[Drop[#, 1] &, Drop[Map[CoefficientList[#, u] &, Table[n!, {n, 0, nn}]CoefficientList[Series[-Log[egf[1/g[z]]], {z, 0, nn}], z] /. y -> 1], 2]] // Grid (* Geoffrey Critzer, Feb 12 2025 *)

Extensions

Row 2 added by N. J. A. Sloane, Dec 29 2020

A339590 Irregular triangle read by rows: T(n,k) (n>=2, k>=1) = number of strong tournaments on n nodes with k descents.

Original entry on oeis.org

0, 1, 1, 1, 6, 10, 6, 1, 1, 13, 56, 123, 158, 123, 56, 13, 1, 1, 22, 172, 717, 1910, 3547, 4791, 4791, 3547, 1910, 717, 172, 22, 1, 1, 33, 402, 2674, 11614, 36293, 86305, 161529, 242890, 297003, 297003, 242890, 161529, 86305, 36293, 11614, 2674, 402, 33, 1
Offset: 2

Views

Author

N. J. A. Sloane, Dec 28 2020

Keywords

Examples

			Triangle begins:
0;
1, 1;
1, 6, 10, 6, 1;
1, 13, 56, 123, 158, 123, 56, 13, 1;
1, 22, 172, 717, 1910, 3547, 4791, 4791, 3547, 1910, 717, 172, 22, 1;
1, 33, 402, 2674, 11614, 36293, 86305, 161529, 242890, 297003, 297003, 242890, 161529, 86305, 36293, 11614, 2674, 402, 33, 1;
...
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.

Crossrefs

Row sums are A054946.

A307049 Irregular table read by rows: The number of acyclic digraphs on n labeled nodes with k descents.

Original entry on oeis.org

1, 2, 1, 8, 11, 5, 1, 64, 161, 167, 102, 39, 9, 1, 1024, 3927, 6698, 7185, 5477, 3107, 1329, 423, 96, 14, 1, 32768, 172665, 419364, 656733, 757939, 686425, 504084, 305207, 153333, 63789, 21752, 5959, 1267, 197, 20, 1, 2097152, 14208231, 45263175, 94040848, 145990526, 181444276, 187742937, 165596535
Offset: 1

Views

Author

R. J. Mathar, Mar 21 2019

Keywords

Examples

			     1;
     2    1;
     8   11    5    1;
    64  161  167  102   39    9    1;
  1024 3927 6698 7185 5477 3107 1329 423 96 14 1;
...
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041. See Table 3

Crossrefs

Cf. A003024 (row sums), A006125, A057273, A339590, A339807.
Showing 1-10 of 12 results. Next