cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A350732 Triangle read by rows: T(n,k) is the number of weakly connected oriented graphs on n labeled nodes with k arcs, n >= 0, k=0..n*(n-1)/2.

Original entry on oeis.org

1, 0, 2, 0, 0, 12, 8, 0, 0, 0, 128, 240, 192, 64, 0, 0, 0, 0, 2000, 7104, 13120, 15360, 11520, 5120, 1024, 0, 0, 0, 0, 0, 41472, 234240, 729600, 1578240, 2531840, 3068928, 2795520, 1863680, 860160, 245760, 32768
Offset: 1

Views

Author

Andrew Howroyd, Jan 11 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 2;
  [3] 0, 0, 12,   8;
  [4] 0, 0,  0, 128,  240,  192,    64;
  [5] 0, 0,  0,   0, 2000, 7104, 13120, 15360, 11520, 5120, 1024;
  ...
		

Crossrefs

Row sums are A054941.
The leading diagonal is A097629.
The unlabeled version is A350734.
Cf. A062735 (digraphs), A350731 (strongly connected).

Programs

  • PARI
    row(n)={Vecrev(n!*polcoef(1 + log(sum(k=0, n, (1+2*y)^(k*(k-1)/2)*x^k/k!, O(x*x^n))), n))}
    { for(n=1, 5, print(row(n))) }

A350750 Triangle read by rows: T(n,k) is the number of strongly connected oriented graphs on n unlabeled nodes with k arcs, n >= 1, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 5, 18, 27, 19, 6, 0, 0, 0, 0, 0, 0, 1, 8, 80, 333, 765, 1122, 1049, 622, 217, 35, 0, 0, 0, 0, 0, 0, 0, 1, 12, 221, 1875, 8971, 28449, 63845, 105556, 130935, 122607, 85926, 43868, 15506, 3403, 353
Offset: 1

Views

Author

Andrew Howroyd, Jan 13 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 0;
  [3] 0, 0, 0, 1;
  [4] 0, 0, 0, 0, 1, 2, 1;
  [5] 0, 0, 0, 0, 0, 1, 5, 18, 27,  19,   6;
  [6] 0, 0, 0, 0, 0, 0, 1,  8, 80, 333, 765, 1122, 1049, 622, 217, 35;
  ...
		

Crossrefs

Row sums are A350489.
Column sums are A350751.
The labeled version is A350731.
Cf. A057276 (digraphs), A350733, A350734.

Programs

  • PARI
    \\ See PARI link in A350489 for program code.
    { my(A=A350750rows(7)); for(n=1, #A, print(A[n])) }

A350730 Number of strongly connected oriented graphs on n labeled nodes.

Original entry on oeis.org

1, 0, 2, 66, 7998, 2895570, 3015624078, 8890966977354, 74079608267459142, 1754419666770364130730, 119163820122708911990211222, 23431180614718394105521543222866, 13448652672256961901980839022683943838, 22684139279519345808802725789494254587951810
Offset: 1

Views

Author

Andrew Howroyd, Jan 11 2022

Keywords

Crossrefs

The unlabeled version is A350489.
Row sums of A350731.

Programs

  • PARI
    StrongO(14) \\ See A350731 for program code.

A350749 Triangle read by rows: T(n,k) is the number of oriented graphs on n labeled nodes with k arcs, n >= 0, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 12, 8, 1, 12, 60, 160, 240, 192, 64, 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024, 1, 30, 420, 3640, 21840, 96096, 320320, 823680, 1647360, 2562560, 3075072, 2795520, 1863680, 860160, 245760, 32768
Offset: 0

Views

Author

Andrew Howroyd, Feb 15 2022

Keywords

Examples

			Triangle begins:
  [0] 1;
  [1] 1;
  [2] 1,  2;
  [3] 1,  6,  12,   8;
  [4] 1, 12,  60, 160,  240,  192,    64;
  [5] 1, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024;
  ...
		

Crossrefs

Row sums are A047656.
The unlabeled version is A350733.
Cf. A013609, A350732 (weakly connected), A350731 (strongly connected).

Programs

  • PARI
    T(n,k) = 2^k * binomial(n*(n-1)/2, k)
    
  • PARI
    row(n) = {Vecrev((1+2*y)^(n*(n-1)/2))}
    { for(n=0, 6, print(row(n))) }

Formula

T(n,k) = 2^k * binomial(n*(n-1)/2, k) = A013609(n*(n-1)/2, k).
T(n,k) = [y^k] (1+2*y)^(n*(n-1)/2).
Showing 1-4 of 4 results.