A054941 Number of weakly connected oriented graphs on n labeled nodes.
1, 2, 20, 624, 55248, 13982208, 10358360640, 22792648882176, 149888345786341632, 2952810709943411146752, 174416705255313941476193280, 30901060796613886817249881227264, 16422801513633911416125344647746244608, 26183660776604240464418800095675915958222848
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..65
- V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
Crossrefs
Programs
-
Magma
m:=30; f:= func< x | (&+[3^Binomial(n,2)*x^n/Factorial(n) : n in [0..m+3]]) >; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Laplace( Log(f(x)) ))); // G. C. Greubel, Apr 28 2023 -
Mathematica
nn=20; s=Sum[3^Binomial[n,2]x^n/n!,{n,0,nn}]; Drop[Range[0,nn]! CoefficientList[Series[Log[s]+1,{x,0,nn}],x],1] (* Geoffrey Critzer, Oct 22 2012 *)
-
PARI
N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, 3^binomial(k, 2)*x^k/k!)))) \\ Seiichi Manyama, May 18 2019
-
SageMath
m=30 def f(x): return sum(3^binomial(n,2)*x^n/factorial(n) for n in range(m+4)) def A054941_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( log(f(x)) ).egf_to_ogf().list() a=A054941_list(40); a[1:] # G. C. Greubel, Apr 28 2023
Formula
E.g.f.: log( Sum_{n >= 0} 3^binomial(n, 2)*x^n/n! ). - Vladeta Jovovic, Feb 14 2003
Extensions
More terms from Vladeta Jovovic, Feb 14 2003
Comments