A001174
Number of oriented graphs (i.e., digraphs with no bidirected edges) on n unlabeled nodes. Also number of complete digraphs on n unlabeled nodes. Number of antisymmetric relations (i.e., oriented graphs with loops) on n unlabeled nodes is A083670.
Original entry on oeis.org
1, 2, 7, 42, 582, 21480, 2142288, 575016219, 415939243032, 816007449011040, 4374406209970747314, 64539836938720749739356, 2637796735571225009053373136, 300365896158980530053498490893399
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 133, c_p.
- M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 1..50
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- R. L. Davis, The number of structures of finite relations, Proc. Amer. Math. Soc. 4 (1953), 486-495.
- Musa Demirci, Ugur Ana, and Ismail Naci Cangul, Properties of Characteristic Polynomials of Oriented Graphs, Proc. Int'l Conf. Adv. Math. Comp. (ICAMC 2020) Springer, see p. 60.
- F. Harary and E. M. Palmer, Enumeration of mixed graphs, Proc. Amer. Math. Soc., 17 (1966), 682-687.
- T. R. Hoffman and J. P. Solazzo, Complex Two-Graphs via Equiangular Tight Frames, arXiv preprint arXiv:1408.0334 [math.CO], 2014-2017.
- M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sep. 15, 1955, pp. 14-22. [Annotated scanned copy]
- G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
- Eric Weisstein's World of Mathematics, Oriented Graph
-
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total @ Quotient[v - 1, 2];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
Array[a, 15] (* Jean-François Alcover, Jul 06 2018, after Andrew Howroyd *)
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Oct 23 2017
-
from itertools import combinations
from math import prod, gcd, factorial
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A001174(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q-1>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 15 2024
A086345
Number of connected oriented graphs (i.e., connected directed graphs with no bidirected edges) on n nodes.
Original entry on oeis.org
1, 1, 1, 5, 34, 535, 20848, 2120098, 572849763, 415361983540, 815590925440865, 4373589784210012634, 64535461714821630421106, 2637732191356603658136444467, 300363258297687600380548275359231
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Musa Demirci, Ugur Ana, and Ismail Naci Cangul, Properties of Characteristic Polynomials of Oriented Graphs, Proc. Int'l Conf. Adv. Math. Comp. (ICAMC 2020) Springer, see p. 61.
- Chathura Kankanamge, Multiple Continuous Subgraph Query Optimization Using Delta Subgraph Queries, Master Maths Thesis, Univ. of Waterloo, 2018.
- Eric Weisstein's World of Mathematics, Oriented Graph
-
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total @ Quotient[v - 1, 2];
a1174[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
b = Array[a1174, 15];
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
A086345 = EULERi[b] (* Jean-François Alcover, Jul 06 2018, after Andrew Howroyd *)
-
from functools import lru_cache
from itertools import combinations
from math import prod, factorial, gcd
from fractions import Fraction
from sympy.utilities.iterables import partitions
from sympy import mobius, divisors
def A086345(n):
@lru_cache(maxsize=None)
def b(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q-1>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n)))
@lru_cache(maxsize=None)
def c(n): return n*b(n)-sum(c(k)*b(n-k) for k in range(1,n))
return sum(mobius(d)*c(n//d) for d in divisors(n,generator=True))//n if n else 1 # Chai Wah Wu, Jul 15 2024
A350732
Triangle read by rows: T(n,k) is the number of weakly connected oriented graphs on n labeled nodes with k arcs, n >= 0, k=0..n*(n-1)/2.
Original entry on oeis.org
1, 0, 2, 0, 0, 12, 8, 0, 0, 0, 128, 240, 192, 64, 0, 0, 0, 0, 2000, 7104, 13120, 15360, 11520, 5120, 1024, 0, 0, 0, 0, 0, 41472, 234240, 729600, 1578240, 2531840, 3068928, 2795520, 1863680, 860160, 245760, 32768
Offset: 1
Triangle begins:
[1] 1;
[2] 0, 2;
[3] 0, 0, 12, 8;
[4] 0, 0, 0, 128, 240, 192, 64;
[5] 0, 0, 0, 0, 2000, 7104, 13120, 15360, 11520, 5120, 1024;
...
-
row(n)={Vecrev(n!*polcoef(1 + log(sum(k=0, n, (1+2*y)^(k*(k-1)/2)*x^k/k!, O(x*x^n))), n))}
{ for(n=1, 5, print(row(n))) }
A350730
Number of strongly connected oriented graphs on n labeled nodes.
Original entry on oeis.org
1, 0, 2, 66, 7998, 2895570, 3015624078, 8890966977354, 74079608267459142, 1754419666770364130730, 119163820122708911990211222, 23431180614718394105521543222866, 13448652672256961901980839022683943838, 22684139279519345808802725789494254587951810
Offset: 1
A177780
E.g.f. satisfies: L(x) = x*Sum_{n>=0} (2^n/n!)*Product_{k=0..n-1} L(3^k*x).
Original entry on oeis.org
1, 4, 60, 2496, 276240, 83893248, 72508524480, 182341191057408, 1348995112077074688, 29528107099434111467520, 1918583757808453356238126080, 370812729559366641806998574727168
Offset: 1
E.g.f.: L(x) = x + 4*x^2/2! + 60*x^3/3! + 2496*x^4/4! + 276240*x^5/5! + ... + n*A054941(n)*x^n/n! + ...
Given the related expansions:
E(x) = 1 + x + 3*x^2/2! + 27*x^3/3! + 729*x^4/4! + 59049*x^5/5! + ...
log(E(x)) = x + 2*x^2/2! + 20*x^3/3! + 624*x^4/4! + 55248*x^5/5! + ... + A054941(n)*x^n/n! + ...
then L(x) satisfies:
L(x)/x = 1 + 2*L(x) + 2^2*L(x)L(3x)/2! + 2^3*L(x)L(3x)L(9x)/3! + 2^4*L(x)L(3x)L(9x)L(27x)/4! + ...
1/E(x) = 1 - L(x) + L(x)L(3x)/2! - L(x)L(3x)L(9x)/3! + L(x)L(3x)L(9x)L(27x)/4! -+ ...
-
m = 13; A[] = 0; Do[A[x] = x Sum[2^n/n! Product[A[3^k x], {k, 0, n-1}], {n, 0, m}] + O[x]^m // Normal, {m}]; CoefficientList[A[x]/x, x] * Range[1, m-1]! (* Jean-François Alcover, Nov 03 2019 *)
-
{a(n,q=3)=local(Lq=x+x^2);for(i=1,n,Lq=x*sum(m=0,n,(q-1)^m/m!*prod(k=0,m-1,subst(Lq,x,q^k*x+x*O(x^n)))));n!*polcoeff(Lq,n)}
A054942
Number of connected oriented graphs on n nodes with an even number of edges.
Original entry on oeis.org
1, 0, 12, 304, 27664, 6990848, 5179182272, 11396324423680, 74944172893348096, 1476405354971703541760, 87208352627656970763963392, 15450530398306943408624578330624, 8211400756816955708062672329408385024
Offset: 1
-
m:=30;
f:= func< x | (&+[3^Binomial(n,2)*x^n/Factorial(n) : n in [0..m+3]]) >;
R:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( Log(f(x)*(Cos(x) + Sin(x)))/2 ))); // G. C. Greubel, Apr 29 2023
-
nn = 15; g[z] := Sum[(1 + 2 u)^Binomial[n, 2] z^n/n!, {n, 0, nn}]; Drop[
Map[Total[#[[1 ;; Binomial[nn, 2] + 1 ;;2]]]&,Range[0,nn]!CoefficientList[
Series[Log[g[z]], {z, 0, nn}], {z, u}]], 1] (* Geoffrey Critzer, Jul 28 2016 *)
-
seq(n)={my(A=O(x*x^n)); Vec(serlaplace(log(sum(k=0, n, 3^binomial(k, 2)*x^k/k!) + A) + log(cos(x + A) + sin(x + A)))/2)} \\ Andrew Howroyd, Sep 10 2018
-
m=30
def f(x): return sum(3^binomial(n,2)*x^n/factorial(n) for n in range(m+4))
def A054941_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( log(f(x)*(cos(x) + sin(x)))/2 ).egf_to_ogf().list()
a=A054941_list(40); a[1:] # G. C. Greubel, Apr 29 2023
A054943
Number of connected oriented graphs on n nodes with an odd number of edges.
Original entry on oeis.org
0, 2, 8, 320, 27584, 6991360, 5179178368, 11396324458496, 74944172892993536, 1476405354971707604992, 87208352627656970712229888, 15450530398306943408625302896640, 8211400756816955708062672318337859584
Offset: 1
-
nn = 15; g[z] :=Sum[(1 + 2 u)^Binomial[n, 2] z^n/n!, {n, 0, nn}]; Drop[
Map[Total[#[[2 ;; Binomial[nn, 2] + 1 ;;2]]]&,Range[0,nn]!CoefficientList[
Series[Log[g[z]], {z, 0, nn}], {z, u}]], 1] (* Geoffrey Critzer, Jul 28 2016 *)
-
seq(n)={my(A=O(x*x^n)); Vec(serlaplace(log(sum(k=0, n, 3^binomial(k, 2)*x^k/k!) + A) - log(cos(x + A) + sin(x + A)))/2, -n)} \\ Andrew Howroyd, Sep 10 2018
A308458
Expansion of e.g.f. log(Sum_{k>=0} k^binomial(k,2) * x^k / k!).
Original entry on oeis.org
1, 1, 23, 3994, 9745169, 470126386536, 558542572785461515, 19342808645467142112096240, 22528399370853856386499346950471953, 999999999774716004550606847948627702867525440, 1890591424701781041871514584507296209311760279398415565711
Offset: 1
E.g.f.: x + x^2/2! + 23*x^3/3! + 3994*x^4/4! + 9745169*x^5/5! + 470126386536*x^6/6! + 558542572785461515*x^7/7! + ... .
A308460
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. log(Sum_{j>=0} k^binomial(j,2) * x^j/j!).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 20, 38, 0, 1, 4, 54, 624, 728, 0, 1, 5, 112, 3834, 55248, 26704, 0, 1, 6, 200, 15104, 1027080, 13982208, 1866256, 0, 1, 7, 324, 45750, 9684224, 1067308488, 10358360640, 251548592, 0, 1, 8, 490, 116208, 60225000, 30458183680, 4390480193904, 22792648882176, 66296291072, 0
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, ...
0, 4, 20, 54, 112, ...
0, 38, 624, 3834, 15104, ...
0, 728, 55248, 1027080, 9684224, ...
0, 26704, 13982208, 1067308488, 30458183680, ...
Showing 1-9 of 9 results.
Comments