cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A001174 Number of oriented graphs (i.e., digraphs with no bidirected edges) on n unlabeled nodes. Also number of complete digraphs on n unlabeled nodes. Number of antisymmetric relations (i.e., oriented graphs with loops) on n unlabeled nodes is A083670.

Original entry on oeis.org

1, 2, 7, 42, 582, 21480, 2142288, 575016219, 415939243032, 816007449011040, 4374406209970747314, 64539836938720749739356, 2637796735571225009053373136, 300365896158980530053498490893399
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 133, c_p.
  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A047656 (labeled case), A054941 (connected labeled case), A086345 (connected unlabeled case).

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total @ Quotient[v - 1, 2];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
    Array[a, 15] (* Jean-François Alcover, Jul 06 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, (v[i]-1)\2)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Oct 23 2017
    
  • Python
    from itertools import combinations
    from math import prod, gcd, factorial
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A001174(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r,s) for r,s in combinations(p.keys(),2))+sum((q-1>>1)*r+(q*r*(r-1)>>1) for q, r in p.items())),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 15 2024

Formula

There's an explicit formula - see for example Harary and Palmer (book), Eq. (5.4.14).
a(n) ~ 3^(n*(n-1)/2)/n! [McIlroy, 1955]. - Vaclav Kotesovec, Dec 19 2016

Extensions

More terms from Vladeta Jovovic
Revised description from Vladeta Jovovic, Jan 20 2005

A350489 Number of strongly connected oriented graphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 0, 1, 4, 76, 4232, 611528, 222688092, 205040866270, 484396550160186, 2987729989350536868, 48933147333828638153224, 2160018687398735805070288200, 260218032038985813416099131315377, 86440094822917159858790627703492969772
Offset: 0

Views

Author

Andrew Howroyd, Jan 01 2022

Keywords

Crossrefs

Row sums of A350750.
The labeled version is A350730.

Programs

  • PARI
    A350489seq(15) \\ See Links for program code.

A054941 Number of weakly connected oriented graphs on n labeled nodes.

Original entry on oeis.org

1, 2, 20, 624, 55248, 13982208, 10358360640, 22792648882176, 149888345786341632, 2952810709943411146752, 174416705255313941476193280, 30901060796613886817249881227264, 16422801513633911416125344647746244608, 26183660776604240464418800095675915958222848
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Comments

The triangle of oriented labeled graphs on n>=1 nodes with 1<=k<=n components and row sums A047656 starts:
1;
2, 1;
20, 6, 1;
624, 92, 12, 1;
55248, 3520, 260, 20, 1;
13982208, 354208, 11880, 580, 30, 1; - R. J. Mathar, Apr 29 2019

Crossrefs

Row sums of A350732.
The unlabeled version is A086345.
Cf. A001187 (graphs), A003027 (digraphs), A350730 (strongly connected).

Programs

  • Magma
    m:=30;
    f:= func< x | (&+[3^Binomial(n,2)*x^n/Factorial(n) : n in [0..m+3]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( Log(f(x)) ))); // G. C. Greubel, Apr 28 2023
    
  • Mathematica
    nn=20; s=Sum[3^Binomial[n,2]x^n/n!,{n,0,nn}];
    Drop[Range[0,nn]! CoefficientList[Series[Log[s]+1,{x,0,nn}],x],1] (* Geoffrey Critzer, Oct 22 2012 *)
  • PARI
    N=20; x='x+O('x^N); Vec(serlaplace(log(sum(k=0, N, 3^binomial(k, 2)*x^k/k!)))) \\ Seiichi Manyama, May 18 2019
    
  • SageMath
    m=30
    def f(x): return sum(3^binomial(n,2)*x^n/factorial(n) for n in range(m+4))
    def A054941_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( log(f(x)) ).egf_to_ogf().list()
    a=A054941_list(40); a[1:] # G. C. Greubel, Apr 28 2023

Formula

E.g.f.: log( Sum_{n >= 0} 3^binomial(n, 2)*x^n/n! ). - Vladeta Jovovic, Feb 14 2003

Extensions

More terms from Vladeta Jovovic, Feb 14 2003

A350734 Triangle read by rows: T(n,k) is the number of weakly connected oriented graphs on n unlabeled nodes with k arcs, n >= 1, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 2, 0, 0, 0, 8, 12, 10, 4, 0, 0, 0, 0, 27, 68, 127, 144, 107, 50, 12, 0, 0, 0, 0, 0, 91, 395, 1144, 2393, 3767, 4500, 4112, 2740, 1274, 376, 56, 0, 0, 0, 0, 0, 0, 350, 2170, 9139, 28606, 71583, 145600, 244589, 339090, 387458, 361394, 271177, 159872, 71320, 22690, 4604, 456
Offset: 1

Views

Author

Andrew Howroyd, Jan 13 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 1;
  [3] 0, 0, 3, 2;
  [4] 0, 0, 0, 8, 12, 10,   4;
  [5] 0, 0, 0, 0, 27, 68, 127, 144, 107, 50, 12;
  ...
		

Crossrefs

Row sums are A086345.
Column sums are A350915.
Leading diagonal is A000238.
The labeled version is A350732.
Cf. A054733, A350733, A350750, A350914 (transpose).

Programs

  • PARI
    InvEulerMTS(p)={my(n=serprec(p,x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+2*x^i)); s/n!}
    row(n)={Vecrev(polcoef(InvEulerMTS(sum(i=0, n, G(i, y)*x^i, O(x*x^n))), n))}
    { for(n=1, 6, print(row(n))) }

A350914 Triangle read by rows: T(n,k) is the number of unlabeled weakly connected oriented graphs with n arcs and k vertices, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 0, 0, 2, 8, 0, 0, 0, 12, 27, 0, 0, 0, 10, 68, 91, 0, 0, 0, 4, 127, 395, 350, 0, 0, 0, 0, 144, 1144, 2170, 1376, 0, 0, 0, 0, 107, 2393, 9139, 11934, 5743, 0, 0, 0, 0, 50, 3767, 28606, 67104, 64892, 24635, 0, 0, 0, 0, 12, 4500, 71583, 288331, 468702, 352286, 108968
Offset: 0

Views

Author

Andrew Howroyd, Jan 29 2022

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 3;
  0, 0, 2,  8;
  0, 0, 0, 12,  27;
  0, 0, 0, 10,  68,   91;
  0, 0, 0,  4, 127,  395,  350;
  0, 0, 0,  0, 144, 1144, 2170, 1376;
  ...
		

Crossrefs

Row sums are A350915.
Column sums are A086345.
Cf. A350734 (transpose), A350789 (digraphs).

Programs

  • PARI
    \\ See A350734 for G, InvEulerMTS.
    T(n)={my(p=InvEulerMTS(sum(i=0, n, G(i, y+O(y^n))*x^i, O(x*x^n)))); vector(n, n, Vec(O(x^n)+polcoef(p,n-1,y)/x, -n))}
    { my(A=T(10)); for(n=1, #A, print(A[n])) }

A350915 Number of weakly connected oriented graphs with n arcs.

Original entry on oeis.org

1, 1, 3, 10, 39, 169, 876, 4834, 29316, 189054, 1294382, 9321232, 70326820, 553433559, 4528840412, 38432156859, 337454775045, 3059843449398, 28602687303185, 275222034228537, 2722343346822614, 27647618196693537, 287970349621911635, 3073082817450997700, 33568654163238906968
Offset: 0

Views

Author

Andrew Howroyd, Jan 29 2022

Keywords

Crossrefs

Row sums of A350914.
Column sums of A350734.

Programs

  • PARI
    \\ See A350734 for G, InvEulerMTS.
    seq(n)=Vec(subst(Pol(InvEulerMTS(sum(i=0, n, G(i, y+O(y^n))*x^i, O(x*x^n)))), x, 1))

A101460 Number of connected antisymmetric relations on n unlabeled nodes.

Original entry on oeis.org

1, 2, 4, 32, 467, 15726, 1283648, 266995482, 145658273814, 212067643326874, 834200554714504905, 8952922576975709358534, 264287923205519914989471726, 21606715274151098406493353524694, 4921011141817073607674347572008576367
Offset: 0

Views

Author

Vladeta Jovovic, Jan 20 2005

Keywords

Crossrefs

Formula

Inverse Euler transform of A083670. - Andrew Howroyd, Oct 24 2019

A281446 Triangle read by rows: Number of oriented graphs on n nodes with k components.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 5, 1, 1, 0, 34, 6, 1, 1, 0, 535, 39, 6, 1, 1, 0, 20848, 584, 40, 6, 1, 1, 0, 2120098, 21553, 589, 40, 6, 1, 1, 0, 572849763, 2144216, 21602, 590, 40, 6, 1, 1, 0, 415361983540, 575092291, 2144956, 21607, 590, 40, 6, 1, 1, 0, 815590925440865, 415946286005, 575116919, 2145005, 21608
Offset: 0

Views

Author

R. J. Mathar, Apr 13 2017

Keywords

Comments

Multiset transform of A086345.

Examples

			1;
0,1;
0,1,1;
0,5,1,1;
0,34,6,1,1;
0,535,39,6,1,1;
0,20848,584,40,6,1,1;
0,2120098,21553,589,40,6,1,1;
0,572849763,2144216,21602,590,40,6,1,1;
0,415361983540,575092291,2144956,21607,590,40,6,1,1;
		

Crossrefs

Cf. A086345 (column 1), A001174 (row sums).

Formula

G.f.: Product_{j>=1} (1-y*x^j)^(-A086345(j)). - Alois P. Heinz, Apr 13 2017
Showing 1-8 of 8 results.