cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A057273 Triangle T(n,k) of the number of strongly connected digraphs on n labeled nodes and with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 2, 9, 6, 1, 0, 0, 0, 0, 6, 84, 316, 492, 417, 212, 66, 12, 1, 0, 0, 0, 0, 0, 24, 720, 6440, 26875, 65280, 105566, 122580, 106825, 71700, 37540, 15344, 4835, 1140, 190, 20, 1, 0, 0, 0, 0, 0, 0, 120, 6480, 107850, 868830, 4188696, 13715940
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0,0,1;
  [3] 0,0,0,2,9,6,1;
  [4] 0,0,0,0,6,84,316,492,417,212,66,12,1;
  ...
Number of strongly connected digraphs on 3 labeled nodes is 18 = 2+9+6+1.
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041. See Table 2.

Crossrefs

Row sums give A003030.
The unlabeled version is A057276.

Programs

  • PARI
    B(nn, e=2)={my(v=vector(nn)); for(n=1, nn, v[n] = e^(n*(n-1)) - sum(k=1, n-1, binomial(n,k)*e^((n-1)*(n-k))*v[k])); v}
    Strong(n, e=2)={my(u=B(n, e), v=vector(n)); v[1]=1; for(n=2, #v, v[n] = u[n] + sum(j=1, n-1, binomial(n-1, j-1)*u[n-j]*v[j])); v}
    row(n)={ Vecrev(Strong(n, 1+'y)[n]) }
    { for(n=1, 5, print(row(n))) } \\ Andrew Howroyd, Jan 10 2022

Extensions

Terms a(46) and beyond from Andrew Howroyd, Jan 10 2022

A339590 Irregular triangle read by rows: T(n,k) (n>=2, k>=1) = number of strong tournaments on n nodes with k descents.

Original entry on oeis.org

0, 1, 1, 1, 6, 10, 6, 1, 1, 13, 56, 123, 158, 123, 56, 13, 1, 1, 22, 172, 717, 1910, 3547, 4791, 4791, 3547, 1910, 717, 172, 22, 1, 1, 33, 402, 2674, 11614, 36293, 86305, 161529, 242890, 297003, 297003, 242890, 161529, 86305, 36293, 11614, 2674, 402, 33, 1
Offset: 2

Views

Author

N. J. A. Sloane, Dec 28 2020

Keywords

Examples

			Triangle begins:
0;
1, 1;
1, 6, 10, 6, 1;
1, 13, 56, 123, 158, 123, 56, 13, 1;
1, 22, 172, 717, 1910, 3547, 4791, 4791, 3547, 1910, 717, 172, 22, 1;
1, 33, 402, 2674, 11614, 36293, 86305, 161529, 242890, 297003, 297003, 242890, 161529, 86305, 36293, 11614, 2674, 402, 33, 1;
...
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.

Crossrefs

Row sums are A054946.

A307049 Irregular table read by rows: The number of acyclic digraphs on n labeled nodes with k descents.

Original entry on oeis.org

1, 2, 1, 8, 11, 5, 1, 64, 161, 167, 102, 39, 9, 1, 1024, 3927, 6698, 7185, 5477, 3107, 1329, 423, 96, 14, 1, 32768, 172665, 419364, 656733, 757939, 686425, 504084, 305207, 153333, 63789, 21752, 5959, 1267, 197, 20, 1, 2097152, 14208231, 45263175, 94040848, 145990526, 181444276, 187742937, 165596535
Offset: 1

Views

Author

R. J. Mathar, Mar 21 2019

Keywords

Examples

			     1;
     2    1;
     8   11    5    1;
    64  161  167  102   39    9    1;
  1024 3927 6698 7185 5477 3107 1329 423 96 14 1;
...
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041. See Table 3

Crossrefs

Cf. A003024 (row sums), A006125, A057273, A339590, A339807.

A379808 Indices of records in A379059.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 19, 22, 24, 29, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 90, 91, 92, 93, 94, 95, 96, 97, 99, 101, 105, 106
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2025

Keywords

Crossrefs

Showing 1-4 of 4 results.