cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A003030 Number of strongly connected digraphs with n labeled nodes.

Original entry on oeis.org

1, 1, 18, 1606, 565080, 734774776, 3523091615568, 63519209389664176, 4400410978376102609280, 1190433705317814685295399296, 1270463864957828799318424676767488, 5381067966826255132459611681511359329536, 90765788839403090457244128951307413371883494400
Offset: 1

Views

Author

Keywords

Comments

As usual, there can be an edge both from i to j and from j to i.

Examples

			a(3) = 18 (the symbol = denotes a pair of parallel edges): 1->2->3->1 (2 such); 1=2->3->1 (6); 1=2=3->1 (6); 1=2=3=1 (1); 1=2=3 (3).
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 428.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1980.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A035512, A054946 (strongly connected labeled tournaments), A054947.

Programs

  • Maple
    A003030 := proc(n)
        option remember;
        if n =1 then
            1;
        else
            A054947(n)+add(binomial(n-1,t-1)*procname(t)*A054947(n-t),t=1..n-1) ;
        end if;
    end proc:
    seq(A003030(n),n=1..10) ; # R. J. Mathar, May 10 2016
  • Mathematica
    b[1]=1; b[n_]:=b[n]=2^(n*(n-1))-Sum[Binomial[n,j]*2^((n-1)*(n-j))*b[j],{j,1,n-1}];
    a[1]=1; a[n_]:=a[n]=b[n]+Sum[Binomial[n-1,j-1]*b[n-j]*a[j],{j,1,n-1}];
    Table[a[n],{n,1,15}] (* Vaclav Kotesovec, May 19 2015 *)
  • PARI
    \\ here B(n) is A054947 as vector.
    B(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=2^(n*(n-1))-sum(j=1, n-1, binomial(n, j)*2^((n-1)*(n-j))*v[j])); v}
    seq(n)={my(u=B(n), v=vector(n)); v[1]=1; for(n=2, #v, v[n]=u[n]+sum(j=1, n-1, binomial(n-1, j-1)*u[n-j]*v[j])); v} \\ Andrew Howroyd, Sep 10 2018

Formula

a(n) ~ 2^(n*(n-1)). - Vaclav Kotesovec, May 19 2015

Extensions

a(12)-a(13) added by Andrew Howroyd, Sep 10 2018

A003085 Number of weakly connected digraphs with n unlabeled nodes.

Original entry on oeis.org

1, 2, 13, 199, 9364, 1530843, 880471142, 1792473955306, 13026161682466252, 341247400399400765678, 32522568098548115377595264, 11366712907233351006127136886487, 14669074325902449468573755897547924182
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 124 and 241.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A054733.
Column sums of A350789.
The labeled case is A003027.
Cf. A000273, A003084, A035512 (strongly connected).

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(A000273):
    seq(a(n), n = 1..13); # Peter Luschny, Nov 21 2022
  • Mathematica
    Needs["Combinatorica`"]; d[n_] := GraphPolynomial[n, x, Directed] /. x -> 1; max = 13; se = Series[ Sum[a[n]*x^n/n, {n, 1, max}] - Log[1 + Sum[ d[n]*x^n, {n, 1, max}]], {x, 0, max}]; sol = SolveAlways[ se == 0, x]; Do[ A003084[n] = a[n] /. sol[[1]], {n, 1, max}]; ClearAll[a, d]; a[n_] := (1/n)*Sum[ MoebiusMu[ n/d ] * A003084[d], {d, Divisors[n]} ]; Table[ a[n], {n, 1, max}] (* Jean-François Alcover, Feb 01 2012, after formula *)
    terms = 13;
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v - 1];
    d[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]} ]; s/n!);
    A003084 = CoefficientList[Log[Sum[d[n] x^n, {n, 0, terms+1}]] + O[x]^(terms + 1), x] Range[0, terms] // Rest;
    a[n_] := (1/n)*Sum[MoebiusMu[n/d] * A003084[[d]], {d, Divisors[n]}];
    Table[a[n], {n, 1, terms}] (* Jean-François Alcover, Aug 30 2019, after Andrew Howroyd in A003084 *)
  • Python
    from functools import lru_cache
    from itertools import product, combinations
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A003085(n):
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 05 2024

Formula

a(n) = (1/n)*Sum_{d|n} mu(n/d)*A003084(d), where mu is Moebius function.
Inverse Euler transform of A000273. - Andrew Howroyd, Dec 27 2021

Extensions

More terms from Vladeta Jovovic, Jan 09 2000

A350489 Number of strongly connected oriented graphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 0, 1, 4, 76, 4232, 611528, 222688092, 205040866270, 484396550160186, 2987729989350536868, 48933147333828638153224, 2160018687398735805070288200, 260218032038985813416099131315377, 86440094822917159858790627703492969772
Offset: 0

Views

Author

Andrew Howroyd, Jan 01 2022

Keywords

Crossrefs

Row sums of A350750.
The labeled version is A350730.

Programs

  • PARI
    A350489seq(15) \\ See Links for program code.

A051421 Number of digraphs on n unlabeled nodes with a sink (or, with a source).

Original entry on oeis.org

1, 2, 12, 185, 8990, 1505939, 875542491, 1789247738400, 13018820342147705, 341188114831706152794, 32520852428719860881939391, 11366533535523591133597276823755, 14669006027884671703581740693080811331, 70315546525961698601351615055416574931833334
Offset: 1

Views

Author

Keywords

Comments

Here a sink is defined to be a node to which all other nodes have a directed path. - Andrew Howroyd, Dec 27 2021

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218 (incorrect version).
  • Ronald C. Read, email to N. J. A. Sloane, 28 August, 2000.

Crossrefs

The labeled case is A003028.
Row sums of A057277.

Programs

Extensions

a(6) corrected and a(7) from Sean A. Irvine, Sep 11 2021
a(0)=1 removed and terms a(8) and beyond from Andrew Howroyd, Jan 21 2022

A057276 Triangle T(n,k) of number of strongly connected digraphs on n unlabeled nodes and with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 4, 16, 22, 22, 11, 5, 1, 1, 0, 0, 0, 0, 0, 1, 7, 58, 240, 565, 928, 1065, 953, 640, 359, 150, 59, 16, 5, 1, 1, 0, 0, 0, 0, 0, 0, 1, 10, 165, 1281, 6063, 19591, 47049, 87690, 131927, 163632, 170720, 151238, 115122, 75357, 42745, 20891, 8877, 3224, 1039, 286, 76, 17, 5, 1, 1
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0,0,1;
  [3] 0,0,0,1,2,1,1;
  [4] 0,0,0,0,1,4,16,22,22,11,5,1,1;
  ...
The number of strongly connected digraphs on 3 unlabeled nodes is 5 = 1+2+1+1.
		

Crossrefs

Row sums give A035512.
Column sums give A350752.
The labeled version is A057273.

Programs

Extensions

Terms a(46) and beyond from Andrew Howroyd, Jan 13 2022

A350752 Number of unlabeled strongly connected digraphs with n arcs.

Original entry on oeis.org

1, 0, 1, 1, 3, 6, 25, 91, 442, 2241, 12591, 75180, 478648, 3211245, 22635956, 166828221, 1281518573, 10229858290, 84652925554, 724601312400, 6403522811765, 58327076550161, 546764617643250, 5267719312771122, 52096218005705959, 528285485054771639
Offset: 0

Views

Author

Andrew Howroyd, Jan 13 2022

Keywords

Crossrefs

Row sums of A350753.
Column sums of A057276.

Programs

A049531 Number of digraphs with a source and a sink on n unlabeled nodes.

Original entry on oeis.org

1, 2, 11, 173, 8675, 1483821, 870901739, 1786098545810, 13011539185371716, 341128981258340797839, 32519138088689298538132027, 11366354205366488038532562993809, 14668937734550708660348161757913398001, 70315451107713339843384354196009678853303102
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Comments

Here a source is defined to be a node which has a directed path to all other nodes and a sink to be a node to which all other nodes have a directed path. A digraph with a source and a sink can also be described as initially-finally connected. - Andrew Howroyd, Jan 01 2022

References

  • V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 246.

Crossrefs

Row sums of A057278.
The labeled version is A049524.

Programs

Extensions

a(6)-a(7) from Andrew Howroyd, Jan 01 2022
Terms a(8) and beyond from Andrew Howroyd, Jan 20 2022

A003088 Number of unilateral digraphs with n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 11, 171, 8603, 1478644, 870014637
Offset: 0

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218.
  • Ronald C. Read, email to N. J. A. Sloane, 28 August, 2000.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

Note that Read and Wilson incorrectly give a(4) as 172 - thanks to Vladeta Jovovic, Goran Kilibarda for finding this error and for verifying a(5).
a(7) from Sean A. Irvine, Jan 26 2015

A049512 Number of quasi-initially connected digraphs on n unlabeled nodes.

Original entry on oeis.org

1, 2, 13, 197, 9312, 1528634, 880277970
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Comments

From Sean A. Irvine, Aug 01 2021: (Start)
A quasi-initially connected digraph is a digraph containing at least one vertex v such that every vertex u in the graph can either be reached from v or v can be reached from u (while obeying the directions on the edges).
There is no known formula. (End)

Crossrefs

Extensions

a(6)-a(7) from Sean A. Irvine, Aug 01 2021

A054951 Number of unlabeled semi-strong digraphs on n nodes with mutually nonisomorphic components.

Original entry on oeis.org

1, 1, 4, 78, 4960, 1041872, 704369984, 1579641879248, 12137443766888448, 328148810741254606592, 31830752699315833628787200, 11234243165959817684710307801600, 14576241398832991116522929933694031872, 70075699209573863790264288901653500497274880
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Comments

A digraph is semi-strong if all its weakly connected components are strongly connected. - Andrew Howroyd, Jan 14 2022

References

  • V. A. Liskovets, A contribution to the enumeration of strongly connected digraphs, Dokl. AN BSSR, 17 (1973), 1077-1080 (Russian), MR49#4849.

Crossrefs

Programs

Formula

G.f.: 1 - Product_{n > 0} (1 - x^n)^A035512(n). - Andrew Howroyd, Sep 10 2018

Extensions

More terms from Vladeta Jovovic, Mar 11 2003
a(12)-a(14) from Andrew Howroyd, Sep 10 2018
Showing 1-10 of 21 results. Next