cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A035512 Number of unlabeled strongly connected digraphs with n nodes.

Original entry on oeis.org

1, 1, 1, 5, 83, 5048, 1047008, 705422362, 1580348371788, 12139024825260556, 328160951349343885604, 31831080872412589394328804, 11234274997368899732057135454531, 14576252633139820879894296847900227082
Offset: 0

Views

Author

Ronald C. Read

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 218.
  • V. A. Liskovets, A contribution to the enumeration of strongly connected digraphs, Dokl. AN BSSR, 17 (1973), 1077-1080, MR49#4849.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

Crossrefs

The labeled version is A003030.
Row sums of A057276.
Column sums of A350753.

Programs

Extensions

a(12) and a(13) added by N. J. A. Sloane from the Robinson report, Oct 17 2006

A003027 Number of weakly connected digraphs with n labeled nodes.

Original entry on oeis.org

1, 3, 54, 3834, 1027080, 1067308488, 4390480193904, 72022346388181584, 4721717643249254751360, 1237892809110149882059440768, 1298060596773261804821355107253504, 5444502293680983802677246555274553481984, 91343781554246596956424128384394531707099632640
Offset: 1

Views

Author

Keywords

References

  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The unlabeled case is A003085.
Row sums of A062735.
Cf. A053763 (not necessarily connected), A003030 (strongly connected).

Programs

  • Maple
    b:= n-> 2^(n^2-n):
    a:= proc(n) option remember; local k; `if`(n=0, 1,
          b(n)- add(k*binomial(n,k) *b(n-k)*a(k), k=1..n-1)/n)
        end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Oct 21 2012
  • Mathematica
    Range[0, 20]! CoefficientList[Series[D[1 + Log[Sum[2^(n^2 - n) x^n/n!, {n, 0, 20}]], x], {x, 0,20}], x]
    c[n_]:=2^(n(n-1))-Sum[k Binomial[n,k]c[k] 2^((n-k)(n-k-1)),{k,1,n-1}]/n;c[0]=1;Table[c[i],{i,0,20}]  (* Geoffrey Critzer, Oct 24 2012 *)
  • PARI
    v=Vec(log(sum(n=0, default(seriesprecision), 2^(n^2-n)*x^n/n!))); for(i=1, #v, v[i]*=(i-1)!); v \\ Charles R Greathouse IV, Feb 14 2011
    
  • Sage
    b = lambda n: 2^(n^2-n)
    @cached_function
    def A003027(n):
        return b(n) - sum(k*binomial(n, k)*b(n-k)*A003027(k) for k in (1..n-1)) / n
    [A003027(n) for n in (1..13)] # Peter Luschny, Jan 18 2016

Formula

a(n) = A062738(n)/2^n, since binary relations = digraphs with loops. - Ralf Stephan and Vladeta Jovovic, Mar 24 2004
E.g.f.: log(sum n>=0, 2^(n^2-n)*x^n/n!).
a(n) = A053763(n) - (1/n) * Sum_{k=1..n-1} k*C(n,k)*a(k)*A053763(n-k). - Geoffrey Critzer, Oct 24 2012

Extensions

Corrected and extended by Vladeta Jovovic, Goran Kilibarda

A057273 Triangle T(n,k) of the number of strongly connected digraphs on n labeled nodes and with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 2, 9, 6, 1, 0, 0, 0, 0, 6, 84, 316, 492, 417, 212, 66, 12, 1, 0, 0, 0, 0, 0, 24, 720, 6440, 26875, 65280, 105566, 122580, 106825, 71700, 37540, 15344, 4835, 1140, 190, 20, 1, 0, 0, 0, 0, 0, 0, 120, 6480, 107850, 868830, 4188696, 13715940
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0,0,1;
  [3] 0,0,0,2,9,6,1;
  [4] 0,0,0,0,6,84,316,492,417,212,66,12,1;
  ...
Number of strongly connected digraphs on 3 labeled nodes is 18 = 2+9+6+1.
		

References

  • Archer, K., Gessel, I. M., Graves, C., & Liang, X. (2020). Counting acyclic and strong digraphs by descents. Discrete Mathematics, 343(11), 112041. See Table 2.

Crossrefs

Row sums give A003030.
The unlabeled version is A057276.

Programs

  • PARI
    B(nn, e=2)={my(v=vector(nn)); for(n=1, nn, v[n] = e^(n*(n-1)) - sum(k=1, n-1, binomial(n,k)*e^((n-1)*(n-k))*v[k])); v}
    Strong(n, e=2)={my(u=B(n, e), v=vector(n)); v[1]=1; for(n=2, #v, v[n] = u[n] + sum(j=1, n-1, binomial(n-1, j-1)*u[n-j]*v[j])); v}
    row(n)={ Vecrev(Strong(n, 1+'y)[n]) }
    { for(n=1, 5, print(row(n))) } \\ Andrew Howroyd, Jan 10 2022

Extensions

Terms a(46) and beyond from Andrew Howroyd, Jan 10 2022

A070322 Number of primitive n X n real (0,1)-matrices.

Original entry on oeis.org

1, 1, 3, 139, 25575, 18077431, 47024942643
Offset: 0

Views

Author

N. J. A. Sloane, Aug 22 2003

Keywords

Comments

An n X n nonnegative matrix A is primitive iff every element of A^k is > 0 for some power k. If A is primitive then the power which should have all positive entries is <= n^2 - 2n + 2 (Wielandt).
Equivalently, a(n) is the number of n X n Boolean relation matrices that converge in their powers to U, the all 1's matrix. From the Rosenblatt reference we know that the relations that converge to U are precisely those that are strongly connected and whose cycle lengths have gcd equal to 1. In particular, if a strongly connected relation has at least one self loop then it converges to U. So A003030(n)*(2^n - 1) < a(n) < A003030(n)*2^n. Almost all (0,1)-matrices are primitive. - Geoffrey Critzer, Jul 20 2022

References

  • Sachkov, V. N. and Tarakanov, V. E., Combinatorics of Nonnegative Matrices. Translations of Mathematical Monographs, 213. American Mathematical Society, Providence, RI, 2002.

Crossrefs

Cf. A003030.

Programs

  • Mathematica
    Table[ it=Partition[ #, n ]&/@IntegerDigits[ Range[ 0, -1+2^n^2 ], 2, n^2 ]; Count [ it, (q_?MatrixQ) /; (Max@@Table[ Min@@Flatten[ MatrixPower[ q, k ] ], {k, 1, n^2-2n+2} ] )>0 ], {n, 1, 4} ]

Formula

For asymptotics see Sachkov and Tarakanov.

Extensions

Wouter Meeussen computed a(0) through a(4), Aug 22 2003
I. J. Kennedy computed a(0) through a(5), Aug 22 2003
a(6) from Pontus von Brömssen, Aug 09 2022

A003028 Number of digraphs on n labeled nodes with a source.

Original entry on oeis.org

1, 3, 51, 3614, 991930, 1051469032, 4366988803688, 71895397383029040, 4719082081411731363408, 1237678715644664931691596416, 1297992266840866792981316221144960, 5444416466164313011147841248189209354496, 91343356480627224177654291875698256656613808896
Offset: 1

Views

Author

Keywords

Comments

Here a source is a node that is connected by a directed path to every other node in the digraph (but does not necessarily have indegree zero). - Geoffrey Critzer, Apr 14 2023

References

  • V. Jovovic and G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996) 237-247.
  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The unlabeled version is A051421.
Row sums of A057274.
Column k=1 of A361579.

Programs

Extensions

Corrected and extended by Vladeta Jovovic, Goran Kilibarda
Terms a(12) and beyond from Andrew Howroyd, Jan 11 2022

A049524 Number of digraphs with a source and a sink on n labeled nodes.

Original entry on oeis.org

1, 3, 48, 3424, 962020, 1037312116, 4344821892264, 71771421308713624, 4716467927380427847264, 1237465168798883061207535456, 1297923989772809185944542332007104, 5444330658513426322624322033259452670016, 91342931436147421630261703458729460990513248512
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Comments

Here a source is defined to be a node which has a directed path to all other nodes and a sink to be a node to which all other nodes have a directed path. A digraph with a source and a sink can also be described as initially-finally connected. - Andrew Howroyd, Jan 16 2022

References

  • V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 244.

Crossrefs

The unlabeled version is A049531.
Row sums of A057271.

Programs

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 16 2022

A003029 Number of unilaterally connected digraphs with n labeled nodes.

Original entry on oeis.org

1, 3, 48, 3400, 955860, 1034141596, 4340689156440, 71756043154026904, 4716284688998245793376, 1237457313794197125403483936, 1297922676419612772784598299454784, 5444329780242560941321703550018388707904, 91342929096228825123968637168641318872709897472
Offset: 1

Views

Author

Keywords

References

  • V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), 237-247.
  • R. W. Robinson, Counting labeled acyclic digraphs, pp. 239-273 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The unlabeled version is A003088.
Row sums of A057275.

Programs

Extensions

Corrected and extended by Vladeta Jovovic, Goran Kilibarda
Terms a(12) and beyond from Andrew Howroyd, Jan 11 2022

A049414 Number of quasi-initially connected digraphs with n labeled nodes.

Original entry on oeis.org

1, 3, 54, 3804, 1022320, 1065957628, 4389587378792, 72020744942708040, 4721708591209396542528, 1237892622263984613044109216, 1298060581376190776821670648395840
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Comments

We say that a node v of a digraph is a quasi-source iff for every other node u there exists directed path from u to v or from v to u. A digraph with at least one quasi-source is called quasi-initially connected.

Crossrefs

Row sums of A057272.

Formula

The recurrence formulas are too long to be presented here.

A054947 Enumerates pairs consisting of a strongly connected labeled tournament and an arbitrary labeled tournament.

Original entry on oeis.org

1, 0, 16, 1536, 557056, 731381760, 3517947314176, 63491024068018176, 4399839304395507367936, 1190389701200990489133711360, 1270450770186900638201337522159616, 5381052721259860098970976735257549602816, 90765718885519516263620106778209295628266110976
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 428, see b_n.

Crossrefs

Programs

  • Maple
    A054947 := proc(n)
        option remember;
        if n = 1 then
            1;
        else
            2^(n*(n-1))-add(binomial(n,t)*2^((n-1)*(n-t))*procname(t),t=1..n-1) ;
        end if;
    end proc: # R. J. Mathar, May 10 2016
  • Mathematica
    a[1] = 1; a[n_] := a[n] = 2^(n(n-1)) - Sum[Binomial[n, j] 2^((n-1)(n-j)) a[j], {j, 1, n-1}];
    Array[a, 13] (* Jean-François Alcover, Aug 27 2019 *)
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=2^(n*(n-1))-sum(j=1, n-1, binomial(n, j)*2^((n-1)*(n-j))*v[j])); v} \\ Andrew Howroyd, Sep 09 2018

Formula

a(n) = A054946(n) * A006125(n). - Andrew Howroyd, Jan 10 2022

Extensions

More terms from Vladeta Jovovic, Mar 11 2003

A054948 Number of labeled semi-strong digraphs on n nodes.

Original entry on oeis.org

1, 1, 2, 22, 1688, 573496, 738218192, 3528260038192, 63547436065854848, 4400982906402148836736, 1190477715153930158152163072, 1270476960212865235273469079407872, 5381083212549793228422395071641588743168, 90765858793484859057065439213726376149311958016
Offset: 0

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Comments

A digraph is semi-strong if all its weakly connected components are strongly connected. - Andrew Howroyd, Jan 14 2022
A digraph is semi-strong iff the following implication holds for all x,y in [n]: If there is a directed path from x to y then x and y are in the same strongly connected component. - Geoffrey Critzer, Oct 07 2023

Crossrefs

The unlabeled version is A350754.

Programs

  • Mathematica
    a[n_] := a[n] = Module[{A}, A = 1+Sum[a[k]*x^k/k!, {k, 1, n-1}]; n!*SeriesCoefficient[Sum[2^(k^2-k)*x^k/k!/(A /. x -> 2^k*x) , {k, 0, n}], {x, 0, n}]]; a[0]=1; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Dec 15 2014, after Paul D. Hanna *)
  • PARI
    a(n)=local(A=1+sum(k=1,n-1,a(k)*x^k/k!)+x*O(x^n));n!*polcoeff(sum(k=0,n,2^(k^2-k)*x^k/k!/subst(A,x,2^k*x)),n)
    for(n=0,10,print1(a(n),", ")) \\ Paul D. Hanna, Oct 27 2012

Formula

E.g.f.: 1/(1-B(x)) where B(x) is e.g.f. for A054947. - Vladeta Jovovic, Mar 11 2003
E.g.f. A(x) satisfies: Sum_{n>=0} 2^(n^2-n)*x^n/n! / A(2^n*x) = 1. - Paul D. Hanna, Oct 27 2012
E.g.f.: exp(B(x)) where B(x) is the e.g.f. of A003030. - Andrew Howroyd, Jan 14 2022

Extensions

More terms from Vladeta Jovovic, Mar 11 2003
Changed offset to 0 and added a(0)=1 by Paul D. Hanna, Oct 27 2012
Showing 1-10 of 33 results. Next