cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A350754 Number of semi-strong digraphs on n unlabeled nodes.

Original entry on oeis.org

1, 1, 2, 7, 91, 5144, 1052251, 706480081, 1581055927702, 12140606592270147, 328173093539912361767, 31831409057653120420337536, 11234306829106179168513020426663, 14576263867478482708779036941179024765, 70075728362112833245095630646535639894359350
Offset: 0

Views

Author

Andrew Howroyd, Jan 14 2022

Keywords

Comments

A digraph is semi-strong if all its weakly connected components are strongly connected.

Crossrefs

The labeled version is A054948.
Row sums of A106238.
Cf. A035512.

Formula

Euler transform of A035512.

A054949 Number of labeled semi-strong digraphs on n nodes with an odd number of components.

Original entry on oeis.org

1, 1, 19, 1612, 565276, 734799976, 3523103676184, 63519230066936512, 4400411105398828102336, 1190433708177460323642937216, 1270463865199882936737403300783744, 5381067966904826663696685903449569172992, 90765788839502187660342772995967835888789034496
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Programs

Formula

a(n) = (A054948(n) + A054947(n))/2. - Andrew Howroyd, Sep 10 2018

Extensions

More terms from Vladeta Jovovic, Mar 11 2003

A054950 Number of labeled semi-strong digraphs on n nodes with an even number of components.

Original entry on oeis.org

0, 1, 3, 76, 8220, 3418216, 5156362008, 28205998918336, 571801003320734400, 44006976469834509225856, 13095012982298536065778624128, 15245644966564725709168192019570176, 69953982671396722666217758540260522923520, 1270721533437616701720124856867026526491583190016
Offset: 1

Views

Author

N. J. A. Sloane, May 24 2000

Keywords

Crossrefs

Programs

Formula

a(n) = (A054948(n) - A054947(n))/2. - Andrew Howroyd, Sep 10 2018

Extensions

More terms from Vladeta Jovovic, Mar 11 2003

A218393 E.g.f. A(x) satisfies: Sum_{n>=0} 3^(n^2-n) * x^n/n! / A(3^n*x) = 1.

Original entry on oeis.org

1, 1, 5, 429, 399273, 3072726201, 195746363156205, 107315772169710355749, 519518439242514267271247313, 22466597296811866577087885119239921, 8719095388372045822565716229498060925301845, 30421189091577923093547933001708849981738642279605789
Offset: 0

Views

Author

Paul D. Hanna, Oct 27 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 429*x^3/3! + 399273*x^4/4! + 3072726201*x^5/5! +...
where
1 = 1/A(x) + x/A(3*x) + 3^2*x^2/2!/A(3^2*x) + 3^6*x^3/3!/A(3^3*x) + 3^12*x^4/4!/A(3^4*x) + 3^20*x^5/5!/A(3^5*x) + 3^30*x^6/6!/A(3^6*x) +....
		

Crossrefs

Cf. A054948.

Programs

  • PARI
    {a(n)=local(A=1+sum(k=1,n-1,a(k)*x^k/k!)+x*O(x^n));n!*polcoeff(sum(k=0,n,3^(k^2-k)*x^k/k!/subst(A,x,3^k*x)),n)}
    for(n=0,15,print1(a(n),", "))
Showing 1-4 of 4 results.