A350754
Number of semi-strong digraphs on n unlabeled nodes.
Original entry on oeis.org
1, 1, 2, 7, 91, 5144, 1052251, 706480081, 1581055927702, 12140606592270147, 328173093539912361767, 31831409057653120420337536, 11234306829106179168513020426663, 14576263867478482708779036941179024765, 70075728362112833245095630646535639894359350
Offset: 0
A054949
Number of labeled semi-strong digraphs on n nodes with an odd number of components.
Original entry on oeis.org
1, 1, 19, 1612, 565276, 734799976, 3523103676184, 63519230066936512, 4400411105398828102336, 1190433708177460323642937216, 1270463865199882936737403300783744, 5381067966904826663696685903449569172992, 90765788839502187660342772995967835888789034496
Offset: 1
-
A054947[1] = 1; A054947[n_] := A054947[n] = 2^(n(n - 1)) - Sum[Binomial[n, j] 2^((n - 1)(n - j)) A054947[j], {j, 1, n - 1}];
A054948[0] = 1; A054948[n_] := A054948[n] = Module[{A}, A = 1 + Sum[ A054948[k]*x^k/k!, {k, 1, n - 1}]; n!*SeriesCoefficient[Sum[2^(k^2 - k)*x^k/k!/(A /. x -> 2^k*x) , {k, 0, n}], {x, 0, n}]];
a[n_] := (A054948[n] + A054947[n])/2;
Array[a, 13] (* Jean-François Alcover, Aug 27 2019 *)
A054950
Number of labeled semi-strong digraphs on n nodes with an even number of components.
Original entry on oeis.org
0, 1, 3, 76, 8220, 3418216, 5156362008, 28205998918336, 571801003320734400, 44006976469834509225856, 13095012982298536065778624128, 15245644966564725709168192019570176, 69953982671396722666217758540260522923520, 1270721533437616701720124856867026526491583190016
Offset: 1
-
A054947[1] = 1; A054947[n_] := A054947[n] = 2^(n (n - 1)) - Sum[Binomial[n, j] 2^((n - 1) (n - j)) A054947[j], {j, 1, n - 1}];
A054948[0] = 1; A054948[n_] := A054948[n] = Module[{A}, A = 1 + Sum[ A054948[k]*x^k/k!, {k, 1, n - 1}]; n!*SeriesCoefficient[Sum[2^(k^2 - k)*x^k/k!/(A /. x -> 2^k*x) , {k, 0, n}], {x, 0, n}]];
a[n_] := (A054948[n] - A054947[n])/2;
Array[a, 14] (* Jean-François Alcover, Aug 27 2019 *)
A218393
E.g.f. A(x) satisfies: Sum_{n>=0} 3^(n^2-n) * x^n/n! / A(3^n*x) = 1.
Original entry on oeis.org
1, 1, 5, 429, 399273, 3072726201, 195746363156205, 107315772169710355749, 519518439242514267271247313, 22466597296811866577087885119239921, 8719095388372045822565716229498060925301845, 30421189091577923093547933001708849981738642279605789
Offset: 0
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 429*x^3/3! + 399273*x^4/4! + 3072726201*x^5/5! +...
where
1 = 1/A(x) + x/A(3*x) + 3^2*x^2/2!/A(3^2*x) + 3^6*x^3/3!/A(3^3*x) + 3^12*x^4/4!/A(3^4*x) + 3^20*x^5/5!/A(3^5*x) + 3^30*x^6/6!/A(3^6*x) +....
-
{a(n)=local(A=1+sum(k=1,n-1,a(k)*x^k/k!)+x*O(x^n));n!*polcoeff(sum(k=0,n,3^(k^2-k)*x^k/k!/subst(A,x,3^k*x)),n)}
for(n=0,15,print1(a(n),", "))
Showing 1-4 of 4 results.
Comments