cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A057276 Triangle T(n,k) of number of strongly connected digraphs on n unlabeled nodes and with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 4, 16, 22, 22, 11, 5, 1, 1, 0, 0, 0, 0, 0, 1, 7, 58, 240, 565, 928, 1065, 953, 640, 359, 150, 59, 16, 5, 1, 1, 0, 0, 0, 0, 0, 0, 1, 10, 165, 1281, 6063, 19591, 47049, 87690, 131927, 163632, 170720, 151238, 115122, 75357, 42745, 20891, 8877, 3224, 1039, 286, 76, 17, 5, 1, 1
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0,0,1;
  [3] 0,0,0,1,2,1,1;
  [4] 0,0,0,0,1,4,16,22,22,11,5,1,1;
  ...
The number of strongly connected digraphs on 3 unlabeled nodes is 5 = 1+2+1+1.
		

Crossrefs

Row sums give A035512.
Column sums give A350752.
The labeled version is A057273.

Programs

Extensions

Terms a(46) and beyond from Andrew Howroyd, Jan 13 2022

A049531 Number of digraphs with a source and a sink on n unlabeled nodes.

Original entry on oeis.org

1, 2, 11, 173, 8675, 1483821, 870901739, 1786098545810, 13011539185371716, 341128981258340797839, 32519138088689298538132027, 11366354205366488038532562993809, 14668937734550708660348161757913398001, 70315451107713339843384354196009678853303102
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Comments

Here a source is defined to be a node which has a directed path to all other nodes and a sink to be a node to which all other nodes have a directed path. A digraph with a source and a sink can also be described as initially-finally connected. - Andrew Howroyd, Jan 01 2022

References

  • V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 246.

Crossrefs

Row sums of A057278.
The labeled version is A049524.

Programs

Extensions

a(6)-a(7) from Andrew Howroyd, Jan 01 2022
Terms a(8) and beyond from Andrew Howroyd, Jan 20 2022

A057271 Triangle T(n,k) of number of digraphs with a source and a sink on n labeled nodes and k arcs, k=0,1,..,n*(n-1).

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 6, 20, 15, 6, 1, 0, 0, 0, 24, 234, 672, 908, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 120, 2544, 16880, 55000, 111225, 161660, 183006, 167660, 125945, 77520, 38760, 15504, 4845, 1140, 190, 20, 1
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle starts:
[1] 1;
[2] 0,2,1;
[3] 0,0,6,20,15,6,1;
[4] 0,0,0,24,234,672,908,792,495,220,66,12,1;
  ...
The number of digraphs with a source and a sink on 3 labeled nodes is 48 = 6+20+15+6+1.
		

References

  • V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 245.

Crossrefs

Row sums give A049524.
The unlabeled version is A057278.

Programs

  • PARI
    \\ Following Eqn 20 in the Robinson reference.
    Z(p,f)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
    G(e,p)={Z(p, k->1/e^(k*(k-1)/2))}
    U(e,p)={Z(p, k->e^(k*(k-1)/2))}
    DigraphEgf(n,e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
    StrongD(n,e=2)={-log(U(e, 1/G(e, DigraphEgf(n, e))))}
    InitFinally(n, e=2)={my(S=StrongD(n, e)); Vec(serlaplace( S - S^2 + exp(S) * U(e, G(e, S*exp(-S))^2*G(e, DigraphEgf(n,e))) ))}
    row(n)={Vecrev(InitFinally(n, 1+'y)[n]) }
    { for(n=1, 5, print(row(n))) } \\ Andrew Howroyd, Jan 16 2022

A057277 Triangle T(n,k) of number of digraphs with a source on n unlabeled nodes with k arcs, k=0..n*(n-1).

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 2, 4, 4, 1, 1, 0, 0, 0, 4, 16, 34, 46, 38, 27, 13, 5, 1, 1, 0, 0, 0, 0, 9, 56, 229, 573, 1058, 1448, 1653, 1487, 1153, 707, 379, 154, 61, 16, 5, 1, 1, 0, 0, 0, 0, 0, 20, 198, 1218, 5089, 15596, 37302, 72776, 119531, 168233, 205923, 220337, 207147, 170965, 124099, 78811, 43861, 21209, 8951, 3242, 1043, 288, 76, 17, 5, 1, 1
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Triangle begins:
  [1],
  [0, 1, 1],
  [0, 0, 2, 4, 4, 1, 1],
  [0, 0, 0, 4, 16, 34, 46, 38, 27, 13, 5, 1, 1],
  ....
The number of digraphs with a source on 3 unlabeled nodes is 12 = 2+4+4+1+1.
		

Crossrefs

Row sums give A051421.
Column sums give A350907.
The labeled version is A057274.

Programs

Extensions

Terms a(46) and beyond from Andrew Howroyd, Jan 21 2022

A350795 Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled nodes with k arcs and a global source and sink, n >= 1, k = 0..max(1,n-1)*(n-2)+1.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 6, 8, 4, 1, 0, 0, 0, 0, 1, 16, 70, 140, 159, 113, 53, 17, 4, 1, 0, 0, 0, 0, 0, 1, 33, 313, 1439, 3941, 7297, 9750, 9840, 7717, 4788, 2377, 946, 309, 80, 18, 4, 1, 0, 0, 0, 0, 0, 0, 1, 58, 998, 8447, 43269, 152135, 396011
Offset: 1

Views

Author

Andrew Howroyd, Jan 21 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 1;
  [3] 0, 0, 1, 1;
  [4] 0, 0, 0, 1, 6,  8,  4,   1;
  [5] 0, 0, 0, 0, 1, 16, 70, 140, 159, 113, 53, 17, 4, 1;
  ...
		

Crossrefs

Row sums are A350794.
Column sums are A350796.
The labeled version is A350791.

Programs

  • PARI
    \\ See PARI link in A350794 for program code.
    { my(A=A350795triang(5)); for(n=1, #A, print(A[n])) }

A350797 Triangle read by rows: T(n,k) is the number of digraphs on n unlabeled nodes with k arcs and a global source (or sink), n >= 1, k = 0..(n-1)^2.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 2, 1, 0, 0, 0, 4, 11, 19, 15, 8, 2, 1, 0, 0, 0, 0, 9, 45, 157, 319, 453, 455, 352, 199, 93, 32, 9, 2, 1, 0, 0, 0, 0, 0, 20, 167, 928, 3395, 9015, 18172, 29089, 37688, 40446, 36267, 27476, 17560, 9543, 4354, 1688, 547, 157, 36, 9, 2, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 21 2022

Keywords

Examples

			Triangle begins:
  [1] 1;
  [2] 0, 1;
  [3] 0, 0, 2, 2,  1;
  [4] 0, 0, 0, 4, 11, 19, 15, 8, 2, 1;
  ...
		

Crossrefs

Row sums are A350360.
Column sums are A350798.
The leading diagonal is A000081.
The labeled version is A350793.

Programs

  • PARI
    \\ See PARI link in A350794 for program code.
    { my(A=A350797triang(5)); for(n=1, #A, print(A[n])) }

A057279 Triangle T(n,k) of number of digraphs with a quasi-source on n unlabeled nodes and with k arcs, k = 0..n*(n-1).

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 3, 4, 4, 1, 1, 0, 0, 0, 7, 21, 37, 47, 38, 27, 13, 5, 1, 1, 0, 0, 0, 0, 18, 90, 309, 661, 1125, 1477, 1665, 1489, 1154, 707, 379, 154, 61, 16, 5, 1, 1, 0, 0, 0, 0, 0, 44, 374, 1981, 7107, 19166, 41867, 77194, 122918, 170308, 206980, 220768, 207301, 171008, 124110, 78813, 43862, 21209, 8951, 3242, 1043, 288, 76, 17, 5, 1, 1
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Sep 14 2000

Keywords

Examples

			Table starts:
[1],
[0,1,1],
[0,0,3,4,4,1,1],
[0,0,0,7,21,37,47,38,27,13,5,1,1],
...
Number of digraphs with a quasi-source on 3 unlabeled nodes is 13=3+4+4+1+1.
		

Crossrefs

Row sums give A049512. Cf. A057270-A057278.

Extensions

More terms from Sean A. Irvine, May 30 2022

A350906 Number of unlabeled initially-finally connected digraphs with n arcs.

Original entry on oeis.org

1, 1, 2, 5, 16, 56, 241, 1111, 5748, 31912, 190328, 1204317, 8050341, 56516303, 415128256, 3179020729, 25308005049, 208918893640, 1784451646305, 15739926014382, 143130061546156, 1339761466105929, 12891329514544223, 127351374611721837, 1290198076415425548, 13390893744153374776
Offset: 0

Views

Author

Andrew Howroyd, Jan 21 2022

Keywords

Crossrefs

Column sums of A057278.
Cf. A049531 (by vertices), A350752, A350796, A350798, A350907.

Programs

Showing 1-8 of 8 results.