cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003085 Number of weakly connected digraphs with n unlabeled nodes.

Original entry on oeis.org

1, 2, 13, 199, 9364, 1530843, 880471142, 1792473955306, 13026161682466252, 341247400399400765678, 32522568098548115377595264, 11366712907233351006127136886487, 14669074325902449468573755897547924182
Offset: 1

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 124 and 241.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A054733.
Column sums of A350789.
The labeled case is A003027.
Cf. A000273, A003084, A035512 (strongly connected).

Programs

  • Maple
    # The function EulerInvTransform is defined in A358451.
    a := EulerInvTransform(A000273):
    seq(a(n), n = 1..13); # Peter Luschny, Nov 21 2022
  • Mathematica
    Needs["Combinatorica`"]; d[n_] := GraphPolynomial[n, x, Directed] /. x -> 1; max = 13; se = Series[ Sum[a[n]*x^n/n, {n, 1, max}] - Log[1 + Sum[ d[n]*x^n, {n, 1, max}]], {x, 0, max}]; sol = SolveAlways[ se == 0, x]; Do[ A003084[n] = a[n] /. sol[[1]], {n, 1, max}]; ClearAll[a, d]; a[n_] := (1/n)*Sum[ MoebiusMu[ n/d ] * A003084[d], {d, Divisors[n]} ]; Table[ a[n], {n, 1, max}] (* Jean-François Alcover, Feb 01 2012, after formula *)
    terms = 13;
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[v - 1];
    d[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]} ]; s/n!);
    A003084 = CoefficientList[Log[Sum[d[n] x^n, {n, 0, terms+1}]] + O[x]^(terms + 1), x] Range[0, terms] // Rest;
    a[n_] := (1/n)*Sum[MoebiusMu[n/d] * A003084[[d]], {d, Divisors[n]}];
    Table[a[n], {n, 1, terms}] (* Jean-François Alcover, Aug 30 2019, after Andrew Howroyd in A003084 *)
  • Python
    from functools import lru_cache
    from itertools import product, combinations
    from fractions import Fraction
    from math import prod, gcd, factorial
    from sympy import mobius, divisors
    from sympy.utilities.iterables import partitions
    def A003085(n):
        @lru_cache(maxsize=None)
        def b(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 05 2024

Formula

a(n) = (1/n)*Sum_{d|n} mu(n/d)*A003084(d), where mu is Moebius function.
Inverse Euler transform of A000273. - Andrew Howroyd, Dec 27 2021

Extensions

More terms from Vladeta Jovovic, Jan 09 2000

A054733 Triangle of number of (weakly) connected unlabeled digraphs with n nodes and k arcs (n >=2, k >= 1).

Original entry on oeis.org

1, 1, 0, 3, 4, 4, 1, 1, 0, 0, 8, 22, 37, 47, 38, 27, 13, 5, 1, 1, 0, 0, 0, 27, 108, 326, 667, 1127, 1477, 1665, 1489, 1154, 707, 379, 154, 61, 16, 5, 1, 1, 0, 0, 0, 0, 91, 582, 2432, 7694, 19646, 42148, 77305, 122953, 170315, 206982, 220768, 207301, 171008
Offset: 2

Views

Author

Vladeta Jovovic, Apr 21 2000

Keywords

Examples

			1,1;
0,3,4,4,1,1;
0,0,8,22,37,47,38,27,13,5,1,1;
the last batch giving the numbers of connected digraphs with 4 nodes and from 1 to 12 arcs.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.

Crossrefs

Cf. A000238 (leading diagonal), A003085 (row sums), A053454 (column sums), A062735 (labeled).
Cf. A052283 (not necessarily connected), A283753 (another version), A057276 (strongly connected), A350789 (transpose).

Programs

  • PARI
    InvEulerMTS(p)={my(n=serprec(p,x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g) )) * prod(i=1, #v, my(c=v[i]); t(c)^(c-1))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); s/n!}
    row(n)={Vecrev(polcoef(InvEulerMTS(sum(i=0, n, G(i, y)*x^i, O(x*x^n))), n)/y)}
    { for(n=2, 6, print(row(n))) } \\ Andrew Howroyd, Jan 28 2022

A053454 Number of weakly connected digraphs with n arcs.

Original entry on oeis.org

1, 1, 4, 12, 53, 237, 1306, 7537, 47913, 322253, 2297874, 17191216, 134505656, 1095715055, 9267223594, 81162609328, 734511656413, 6856030049629, 65899370570285, 651338242941020, 6611459646337423, 68842439737228261
Offset: 0

Views

Author

Vladeta Jovovic, Jan 12 2000

Keywords

Crossrefs

Column sums of A054733.
Row sums of A350789.

Programs

  • PARI
    \\ See A054733 for G, InvEulerMTS.
    seq(n)=Vec(subst(Pol(InvEulerMTS(sum(i=0, n, G(i, y+O(y^n))*x^i, O(x*x^n)))), x, 1)) \\ Andrew Howroyd, Jan 28 2022

Formula

Inverse Euler transform of A053418. - Max Alekseyev, Jan 22 2010

Extensions

Extended by Max Alekseyev, Jan 22 2010
a(0)=1 prepended by Andrew Howroyd, Jan 28 2022

A350914 Triangle read by rows: T(n,k) is the number of unlabeled weakly connected oriented graphs with n arcs and k vertices, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 0, 0, 2, 8, 0, 0, 0, 12, 27, 0, 0, 0, 10, 68, 91, 0, 0, 0, 4, 127, 395, 350, 0, 0, 0, 0, 144, 1144, 2170, 1376, 0, 0, 0, 0, 107, 2393, 9139, 11934, 5743, 0, 0, 0, 0, 50, 3767, 28606, 67104, 64892, 24635, 0, 0, 0, 0, 12, 4500, 71583, 288331, 468702, 352286, 108968
Offset: 0

Views

Author

Andrew Howroyd, Jan 29 2022

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0, 3;
  0, 0, 2,  8;
  0, 0, 0, 12,  27;
  0, 0, 0, 10,  68,   91;
  0, 0, 0,  4, 127,  395,  350;
  0, 0, 0,  0, 144, 1144, 2170, 1376;
  ...
		

Crossrefs

Row sums are A350915.
Column sums are A086345.
Cf. A350734 (transpose), A350789 (digraphs).

Programs

  • PARI
    \\ See A350734 for G, InvEulerMTS.
    T(n)={my(p=InvEulerMTS(sum(i=0, n, G(i, y+O(y^n))*x^i, O(x*x^n)))); vector(n, n, Vec(O(x^n)+polcoef(p,n-1,y)/x, -n))}
    { my(A=T(10)); for(n=1, #A, print(A[n])) }
Showing 1-4 of 4 results.