cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A054733 Triangle of number of (weakly) connected unlabeled digraphs with n nodes and k arcs (n >=2, k >= 1).

Original entry on oeis.org

1, 1, 0, 3, 4, 4, 1, 1, 0, 0, 8, 22, 37, 47, 38, 27, 13, 5, 1, 1, 0, 0, 0, 27, 108, 326, 667, 1127, 1477, 1665, 1489, 1154, 707, 379, 154, 61, 16, 5, 1, 1, 0, 0, 0, 0, 91, 582, 2432, 7694, 19646, 42148, 77305, 122953, 170315, 206982, 220768, 207301, 171008
Offset: 2

Views

Author

Vladeta Jovovic, Apr 21 2000

Keywords

Examples

			1,1;
0,3,4,4,1,1;
0,0,8,22,37,47,38,27,13,5,1,1;
the last batch giving the numbers of connected digraphs with 4 nodes and from 1 to 12 arcs.
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973.

Crossrefs

Cf. A000238 (leading diagonal), A003085 (row sums), A053454 (column sums), A062735 (labeled).
Cf. A052283 (not necessarily connected), A283753 (another version), A057276 (strongly connected), A350789 (transpose).

Programs

  • PARI
    InvEulerMTS(p)={my(n=serprec(p,x)-1, q=log(p), vars=variables(p)); sum(i=1, n, moebius(i)*substvec(q + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g) )) * prod(i=1, #v, my(c=v[i]); t(c)^(c-1))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); s/n!}
    row(n)={Vecrev(polcoef(InvEulerMTS(sum(i=0, n, G(i, y)*x^i, O(x*x^n))), n)/y)}
    { for(n=2, 6, print(row(n))) } \\ Andrew Howroyd, Jan 28 2022

A053418 Number of unlabeled directed graphs with n arcs and no isolated vertices.

Original entry on oeis.org

1, 1, 5, 17, 80, 365, 1981, 11222, 69511, 455663, 3169244, 23170347, 177513359, 1418920570, 11798710013, 101778754655, 908722427531, 8380602471646, 79692654473866, 780142956502644, 7851084073063731, 81120767066417308
Offset: 0

Views

Author

Vladeta Jovovic, Jan 10 2000

Keywords

Crossrefs

The labeled version is A121252.
Column sums of A350908.
Cf. A000273, A000664, A053454, A053598 (by # of nodes).

Formula

Euler transform of A053454. - Andrew Howroyd, Jan 28 2022

Extensions

Edited and extended by Max Alekseyev, Sep 18 2009

A350789 Triangle read by rows: T(n,k) is the number of unlabeled weakly connected digraphs with n arcs and k vertices, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 0, 4, 8, 0, 0, 4, 22, 27, 0, 0, 1, 37, 108, 91, 0, 0, 1, 47, 326, 582, 350, 0, 0, 0, 38, 667, 2432, 3024, 1376, 0, 0, 0, 27, 1127, 7694, 17314, 16008, 5743, 0, 0, 0, 13, 1477, 19646, 74676, 117312, 84494, 24635
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2022

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 3;
  0, 0, 4,  8;
  0, 0, 4, 22,   27;
  0, 0, 1, 37,  108,   91;
  0, 0, 1, 47,  326,  582,   350;
  0, 0, 0, 38,  667, 2432,  3024,  1376;
  0, 0, 0, 27, 1127, 7694, 17314, 16008, 5743;
  ...
		

Crossrefs

Row sums are A053454.
Column sums are A003085.
Main diagonal is A000238.
Cf. A054733 (transpose), A350450 (acyclic), A350753 (strongly connected).

Programs

  • PARI
    \\ See A054733 for G, InvEulerMTS
    T(n)={my(p=InvEulerMTS(sum(i=0, n, G(i, y+O(y^n))*x^i, O(x*x^n)))); vector(n, n, Vec(O(x^n)+polcoef(p,n-1,y)/x, -n))}
    { my(A=T(10)); for(n=1, #A, print(A[n])) }

A350915 Number of weakly connected oriented graphs with n arcs.

Original entry on oeis.org

1, 1, 3, 10, 39, 169, 876, 4834, 29316, 189054, 1294382, 9321232, 70326820, 553433559, 4528840412, 38432156859, 337454775045, 3059843449398, 28602687303185, 275222034228537, 2722343346822614, 27647618196693537, 287970349621911635, 3073082817450997700, 33568654163238906968
Offset: 0

Views

Author

Andrew Howroyd, Jan 29 2022

Keywords

Crossrefs

Row sums of A350914.
Column sums of A350734.

Programs

  • PARI
    \\ See A350734 for G, InvEulerMTS.
    seq(n)=Vec(subst(Pol(InvEulerMTS(sum(i=0, n, G(i, y+O(y^n))*x^i, O(x*x^n)))), x, 1))
Showing 1-4 of 4 results.